JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (9): 59-70.doi: 10.6040/j.issn.1671-9352.0.2022.349
Previous Articles Next Articles
Cheng LI1,2(),Wengang CHE1,2,*(),Shengxiang GAO1,2
CLC Number:
1 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. |
2 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. |
3 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin: Springer-Verlag, 2016: 21-37. |
4 | ZHU P, WEN L, XIAO B, et al. Vision meets drones: a challenge[J/OL]. arXiv, 2018. https://arxiv.org/abs/1804.07437. |
5 | ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[J/OL]. arXiv, 2017. https://arxiv.org/pdf/1710.09412.pdf. |
6 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOV4: optimal speed and accuracy of object detection[J/OL]. arXiv, 2020. https://arxiv.org/abs/2004.10934. |
7 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv, 2017. https://arxiv.org/abs/1704.04861v1. |
8 | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787. |
9 | HAN K, WANG Y H, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1580-1589. |
10 | REDMON J, FARHADI A. YOLOV3: an incremental improvement[J/OL]. arXiv, 2018. https://arxiv.org/abs/1804.02767. |
11 | LI Z , LIU X , ZHAO Y , et al. A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs[J]. Journal of Visual Communication and Image Representation, 2021, 77 (1): 103058. |
12 | ZHANG P, ZHONG Y, LI X. SlimYOLOv3: narrower, faster and better for real-time UAV applications[C]//Poceedings of Computer Vision and Pattern Recognition(CVPR). Seoul: IEEE, 2019. |
13 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J/OL]. arXiv, 2020. https://arxiv.org/pdf/2010.11929v2.pdf. |
14 | 查俊伟, 张洪艳. 动态感受野特征选择去雾网络[J]. 电子科技, 2023, 36 (7): 1- 8. |
ZHA Junwei , ZHANG Hongyan . Dynamic receptive field feature selection dehazing network[J]. Electronic Science and Technology, 2023, 36 (7): 1- 8. | |
15 |
李翠平, 李仲学, 余东明. 基于泰森多边形法的空间品位插值[J]. 辽宁工程技术大学学报, 2007, 26 (4): 488- 491.
doi: 10.3969/j.issn.1008-0562.2007.04.003 |
LI Cuiping , LI Zhongxue , YU Dongming . Ore grade interpolation based on Thiessen polygon method[J]. Journal of Liaoning Technical University, 2007, 26 (4): 488- 491.
doi: 10.3969/j.issn.1008-0562.2007.04.003 |
|
16 | WANG C Y, LIAO H, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2020. |
17 | CUI C, GAO T, WEI S, et al. PP-LCNet: a lightweight CPU convolutional neural network[J/OL]. arXiv, 2021. https://arxiv.org/abs/2109.15099v1. |
18 | JIE H, LI S, GANG S. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. |
19 | 肖顺亮, 强赞霞, 刘卫光. 基于CSP改进用于拥挤情况的行人检测算法[J]. 计算机技术与发展, 2021, 31 (7): 52- 58. |
XIAO Shunliang , QIANG Zanxia , LIU Weiguang . An improved pedestrian detection algorithm for crowd based on CSP[J]. Computer Technology and Development, 2021, 31 (7): 52- 58. | |
20 |
JIANG J H , FU X J , QIN R , et al. High-speed lightweight ship detection algorithm based on YOLO-V4 for three-channels RGB SAR image[J]. Remote Sensing, 2021, 13 (10): 1909.
doi: 10.3390/rs13101909 |
21 | ALBABA B M, OZER S. SyNet: an ensemble network for object detection in UAV images[C]//Proceedings of Computer Vision and Pattern Recognition(CVPR). Milan: IEEE, 2020. |
22 | WANG H, WANG Z, JIA M, et al. Spatial attention for multi-scale feature refinement for object detection[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul: IEEE, 2019. |
23 | ZHANG X, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul: IEEE, 2019. |
[1] | ZHONG Chengcheng, ZHOU Heng, ZHANG Zitong, ZHANG Chunlei. LAC-UNet: semantic segmentation model based on capsules for representing part-whole hierarchical features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 116-126. |
[2] | Fei-fei XU,Yun-jie XU. Research on matching resumes and positions based on Arc-LSTM [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 83-90. |
[3] | Chang-ying HAO,Yan-yan LAN,Hai-nan ZHANG,Jia-feng GUO,Jun XU,Liang PANG,Xue-qi CHENG. Dialogue generation model based on extended keywords information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 68-76. |
[4] | LIU Biao, LU Zhe, HUANG Yu-wei, JIAO Meng, LI Quan-qi, XUE Rui. Comparative study on neural network structures in power analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 60-66. |
[5] | PANG Bo, LIU Yuan-chao. Fusion of pointwise and deep learning methods for passage ranking [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 30-35. |
[6] | LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian. Steganalysis method based on shallow convolution neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 63-70. |
[7] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
|