JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (6): 76-83.doi: 10.6040/j.issn.1671-9352.0.2022.491

•   • Previous Articles     Next Articles

Sub-Z-Quantales and their properties

Ling WANG(),Bin ZHAO*()   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • Received:2022-09-16 Online:2024-06-20 Published:2024-06-17
  • Contact: Bin ZHAO E-mail:wangling123202208@163.com;zhaobin@snnu.edu.cn

Abstract:

Firstly, the concept of the sub-Z-Quantales is introduced and some properties of sub-Z-Quantales are studied. In particular, the binary operation ⊙ on the set of all sub-Z-Quantales of a unital Z-Quantale containing the identity element is constructed such that the set is a Quantale. Secondly, the definition of join sub-Z-Quantales is given, and it is proved that every join sub-Z-Quantale of a Z-Quantale with a maximum (minimum) element has a maximum (minimum) element. Finally, the concept of conuclei on Z-Quantales is introduced, and it is proved that the join sub-Z-Quantales and conuclei on a Z-Quantale are one-to-one correspondence.

Key words: Z-Quantale, sub-Z-Quantale, conucleus

CLC Number: 

  • O153.1

Fig.1

The binary relation on Q1"

Table 1

The binary operation * on Q1"

* 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b b c
c 0 c c c

Fig.2

The binary relation on Q3"

Table 2

The binary operation * on Q3"

* a b c d
a a a a a
b a b b b
c a b c c
d a b c d

Fig.3

The binary relation on Q4"

Table 3

The binary operation * on Q4"

* a b c d e
a a a a a a
b a b c d d
c a c c d d
d a d d d d
e a d d d d

Fig.4

The binary relation on Q5"

Table 4

The binary operation * on Q5"

* a b c
a a b b
b b b b
c b b c

Fig.5

The binary relation on Q6"

Fig.6

The binary relation on Q7"

Table 5

The binary operation * on Q7"

* a b c d
a a a a a
b a b c d
c a c c d
d a d d d
1 MULVEY C J , PELLETIER J W . On the quantisation of points[J]. Journal of Pure and Applied Algebra, 2001, 159 (2/3): 231- 295.
2 GIRARD J Y . Linear logic[J]. Theoretical Computer Science, 1987, 50 (1): 1- 102.
doi: 10.1016/0304-3975(87)90045-4
3 ABRAMSKY S , VICKERS S . Quantales, observational logic and process semantics[J]. Mathematical Structures in Computer Science, 1993, 3 (2): 161- 227.
doi: 10.1017/S0960129500000189
4 李永明, 李志慧. Quantale与互模拟的进程语义[J]. 数学学报(中文版), 1999, 42 (2): 313- 320.
LI Yongming , LI Zhihui . Quantales and process semantics of bisimulation[J]. Acta Mathematica Sinica, Chinese Series, 1999, 42 (2): 313- 320.
5 ROSENTHAL K I . Quantales and their applications[M]. New York: Longman Scientific and Technical, 1990: 14- 28.
6 韩胜伟, 赵彬. Quantale理论基础[M]. 北京: 科学出版社, 2016: 15- 27.
HAN Shengwei , ZHAO Bin . Basis of quantale theory[M]. Beijing: Science Press, 2016: 15- 27.
7 WRIGHT J B , WAGNER E G , THATCHER J W . A uniform approach to inductive posets and inductive closure[J]. Theoretical Computer Science, 1978, 7 (1): 57- 77.
doi: 10.1016/0304-3975(78)90040-3
8 BANDELT H J , ERNÉ M . The category of Z-continuous posets[J]. Journal of Pure and Applied Algebra, 1983, 30 (2): 219- 226.
9 赵东升, 赵彬. Lawson-Hoffmann对偶定理的推广[J]. 数学学报(中文版), 1998, 41 (6): 1325- 1332.
ZHAO Dongsheng , ZHAO Bin . Generalization of Lawson-Hoffmann duality[J]. Acta Mathematica Sinica, Chinese Series, 1998, 41 (6): 1325- 1332.
10 ZHAO Dongsheng. Generalizations of continuous lattices and frames[D]. Cambridge: Cambridge University Thesis, 1992.
11 JOHNSTONE P T . Stone spaces[M]. Cambridge: Cambridge University Press, 1982: 39- 48.
12 ZHAO Dongsheng . Nuclei on Z-frames[J]. Soochow Journal of Mathematics, 1996, 22 (1): 59- 74.
13 ZHAO Dongsheng . On projective Z-frames[J]. Canadian Mathematical Bulletin, 1997, 40 (1): 39- 46.
doi: 10.4153/CMB-1997-004-4
14 汪开云, 赵彬. Z-Quantale及其范畴性质[J]. 数学学报(中文版), 2010, 53 (5): 997- 1006.
WANG Kaiyun , ZHAO Bin . Z-Quantales and their categorical properties[J]. Acta Mathematica Sinica, Chinese Series, 2010, 53 (5): 997- 1006.
15 鲁静, 汪开云, 赵彬. Z-Quantale的进一步结果[J]. 数学学报(中文版), 2015, 58 (6): 911- 922.
LU Jing , WANG Kaiyun , ZHAO Bin . Some further results on Z-quantales[J]. Acta Mathematica Sinica, Chinese Series, 2015, 58 (6): 911- 922.
16 谢祥云. 序半群引论[M]. 北京: 科学出版社, 2001: 7- 10.
XIE Xiangyun . An introduction of paritially ordered semigroup[M]. Beijing: Science Press, 2001: 7- 10.
[1] LIU Min, ZHAO Bin*. Localic nuclei and conuclei on Quantales [J]. J4, 2013, 48(2): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Zhuan, YUAN Jian-Li, CHEN Jian-Jin. An algorithm based on the boundary-added decomposition matrix for ternary ECL circuits[J]. J4, 2010, 45(3): 45 -49 .
[2] ZHANG Fengxia1, LI Ying1,2, GUO Wenbin1, ZHAO Jianli1. Extremal ranks for block Hermitian and skew-Hermitian matrices[J]. J4, 2010, 45(4): 106 -110 .
[3] JIN Yong-gang, WANG Fan, HU Xiao-peng. Contour matching method based on curvature scale space[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 43 -48 .
[4] LIU Ru-jun,CAO Yu-xia,ZHOU Ping . Anti-control for discrete chaos systems by small feedback[J]. J4, 2007, 42(7): 30 -32 .
[5] WU Song-li1,2, CHEN Gui-you3*. Outer-disturbances and attributes conjunctive shrink#br# law mining and separating[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 1 -5 .
[6] BI Xiao-dong . Free product of left quasi-normal bands[J]. J4, 2008, 43(6): 83 -86 .
[7] HUANG Chong-zheng,WU Yuan-xi,CHEN Hong . An efficient algorithm for current frequent sequence mining in data stream[J]. J4, 2007, 42(11): 37 -39 .
[8] QI Zhong-Bin, XIE Dong, ZHANG He-Beng. The relation between  cyclic edgeconnectivity and cyclic connectivity of 3regular connected graphs[J]. J4, 2009, 44(12): 22 -24 .
[9] WEN Yan-qing, LIU Bao-liang, LUO Fang, MENG Xian-qing. The reliability for a single unit repairable system with repair time omission and working time following PH distribution[J]. J4, 2013, 48(09): 46 -50 .
[10] ZHAI Xiao-rui, ZHANG Chun-xia. Strongly Cartan-Eilenberg Gorenstein projective and injective complexes[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 65 -72 .