JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (12): 65-72.doi: 10.6040/j.issn.1671-9352.0.2014.588

Previous Articles     Next Articles

Strongly Cartan-Eilenberg Gorenstein projective and injective complexes

ZHAI Xiao-rui, ZHANG Chun-xia   

  1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-12-26 Revised:2015-04-13 Online:2015-12-20 Published:2015-12-23

Abstract: The subclasses of Cartan-Eilenberg (CE) Gorenstein projective and CE Gorenstein injective complexes, which are called strongly CE Gorenstein projective and injective complexes, are defined and investigated. The relationships between them and CE complexes are illustrated by some examples. It is proved that a complex G is a CE Gorenstein projective if and only if it is a direct summand of strongly CE Gorenstein projective complex. Some equivalent conditions of which CE Gorenstein projective complex is strongly CE Gorenstein projective complex are given.

Key words: strongly CE Gorenstein projective (injective) complex, CE Gorenstein projective (injective) complex

CLC Number: 

  • O153.3
[1] VERDIER J-L. Des catégories dérivées des catégories abéliennes[J]. Astérisque, 1996, 239:227-229.
[2] ENOGHS E E. Cartan-Eilenberg complexes and resolution[J]. J Algebra, 2011, 342:16-39.
[3] YANG Gang, LIANG Li. Cartan-Eilenberg Gorenstein projective complexes[J]. J Algebra Appl, 2014, 13:1350068.1-1350068.17.
[4] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective, and flat modules[J]. J Pure Appl Algebra, 2007, 210:437-445.
[5] ENOGHS E E, JENDA O M G. Relative Homological Algebra[M]. New York: de Gruyter, 2011.
[6] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[7] GILLESPIE J. The flat model structure on Ch(R)[J]. Trans Amer Math Soc, 2004, 356:3369-3390.
[8] BENNIS D, MAHDOU N. Global Gorenstein dimensions[J]. Proc Amer Math Soc, 2010, 138:461-465.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!