JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 33-37.doi: 10.6040/j.issn.1671-9352.0.2022.634

Previous Articles     Next Articles

Construction of Gorenstein projective modules over tensor rings

Guoliang TANG()   

  1. School of Mathematics and Statistics, Kashi University, Kashi 844008, Xinjiang, China
  • Received:2022-11-24 Online:2023-08-20 Published:2023-07-28

Abstract:

Let R be any ring, M a nilpotent R-bimodule, TR(M) is the associated tensor ring. Suppose that ExtR1(G, MRiRP)=0=Tor1R(M, MRiRG), where P is a projective R-module, G is a Gorenstein projective R-module, and i≥0. It is proved that a TR(M)-module: (X, u) is a Gorenstein projective TR(M)-module if u is a monomorphism and the cokernel of u is a Gorenstein projective R-module.

Key words: tensor rings, Gorenstein projective modules

CLC Number: 

  • O154.2
1 AUSLANDER M , BRIDGER M . Stable module theory[M]. Providence: American Mathematical Society, 1969: 94.
2 ENOCHS E E , JENDA O M G . Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220 (1): 611- 633.
doi: 10.1007/BF02572634
3 HOLM H . Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189 (1/2/3): 167- 193.
4 ENOCHS E E , JENDA O M G . Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
5 COHN P M. Algebra[M]. Vol. 3, 2nd ed. New York: Wiley, 1991.
6 MINAMOTO H . Ampleness of two-sided tilting complexes[J]. International Mathematics Research Notices, 2012, 2012 (1): 67- 101.
doi: 10.1093/imrn/rnr001
7 ROGANOV YU V . The dimension of the tensor algebra of a projective bimodule[J]. Mathematical Notes, 1975, 18 (5/6): 1119- 1123.
8 CHEN X W , LU M . Gorenstein homological properties of tensor rings[J]. Nagoya Mathematical Journal, 2020, 237, 188- 208.
doi: 10.1017/nmj.2018.19
9 MAC LANE S . Categories for the working mathematician[M]. 2nd ed New York: Springer, 1998.
[1] Cuiping ZHANG,Wenfei ZHANG,Fuxia YANG. $\mathscr{X}$-strongly n-Gorenstein projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 26-32, 42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[3] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[4] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[5] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[6] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[7] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[8] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[9] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[10] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .