$\mathscr{X}$-Gorenstein投射模,$\mathscr{X}$-Gorenstein投射维数,$\mathscr{X}$-强n-Gorenstein投射模," /> $\mathscr{X}$-Gorenstein投射模,$\mathscr{X}$-Gorenstein投射维数,$\mathscr{X}$-强n-Gorenstein投射模,"/> $\mathscr{X}$-Gorenstein projective modules,$\mathscr{X}$-Gorenstein projective dimension,$\mathscr{X}$-strongly n-Gorenstein projective modules,"/> <inline-formula><tex-math id="M2">$\mathscr{X}$</tex-math></inline-formula>-strongly <i>n</i>-Gorenstein projective modules

JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 26-32, 42.doi: 10.6040/j.issn.1671-9352.0.2022.502

Previous Articles     Next Articles

$\mathscr{X}$-strongly n-Gorenstein projective modules

Cuiping ZHANG(),Wenfei ZHANG*(),Fuxia YANG   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-09-16 Online:2023-08-20 Published:2023-07-28
  • Contact: Wenfei ZHANG E-mail:zhangcp@nwnu.edu.cu;ZhangWenFei13@163.com

Abstract:

Let $\mathscr{X}$ be a class of containing projective modules. In this paper, the concept of the $\mathscr{X}$-strongly n-Gorenstein projective modules is introduced. We give some basic properties and prove that the $\mathscr{X}$-Gorenstein projective dimension of a module M does not exceed a non-negative integer n if and only if M is the direct summand of a $\mathscr{X}$-strongly n-Gorenstein projective module.

Key words: $\mathscr{X}$-Gorenstein projective modules')">$\mathscr{X}$-Gorenstein projective modules, $\mathscr{X}$-Gorenstein projective dimension')">$\mathscr{X}$-Gorenstein projective dimension, $\mathscr{X}$-strongly n-Gorenstein projective modules')">$\mathscr{X}$-strongly n-Gorenstein projective modules

CLC Number: 

  • O153.3
1 AUSLANDER M , BRIDGER M . Stable module theory[M]. [S.l.]: American Mathematical Society, 1969: 94.
2 HOLM H . Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189 (1/2/3): 167- 193.
3 BENNIS D , MAHDOU N . Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210 (2): 437- 445.
doi: 10.1016/j.jpaa.2006.10.010
4 YANG Xiaoyan , LIU Zhongkui . Strongly Gorenstein projective, injective and flat modules[J]. Journal of Algebra, 2008, 320 (7): 2659- 2674.
doi: 10.1016/j.jalgebra.2008.07.006
5 MAHDOU N , TAMEKKANTE M . Strongly n-Gorenstein projective, injective, and flat modules[J]. Acta Mathematica Universitatis Comenianae, 2018, 87 (1): 35- 53.
6 谭玲玲. 强n-Ding模及其相关性质[D]. 武汉: 湖北大学, 2014.
TAN Lingling. Strongly n-Ding modules and the related properties[D]. Wuhan: Hubei University, 2014.
7 BENNIS D , OUARGHI K . X-Gorenstein projective modules[J]. International Mathematical Forum, 2010, 5 (10): 487- 491.
8 唐丽娟. $\mathscr{X}$-Gorenstein投射维数和Tate上同调[D]. 兰州: 西北师范大学, 2017.
TANG Lijuan. $\mathscr{X}$-Gorenstein projective dimension and Tate cohomology[D]. Lanzhou: Northwest Normal University, 2017.
[1] Xianhong YANG,Guoliang TANG,Zhenxing DI. Recollements of Gorenstein flat cotorsion modules over triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 18-25.
[2] Mengge GUAN,Hainan ZHOU,Junchao WEI. Some equivalent characterizations on EP elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 13-17.
[3] Yao WANG,Jianghuan CHEN,Yanli REN. Quasi-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 1-8.
[4] YIN Jun-qi, YANG Gang. Gorenstein DG-injective complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 28-33.
[5] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[6] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[7] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[8] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[9] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[10] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[11] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[12] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[13] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[14] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[15] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[3] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[4] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[5] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[6] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[7] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[8] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[9] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[10] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .