JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 1-8.doi: 10.6040/j.issn.1671-9352.0.2022.507

    Next Articles

Quasi-J-clean rings

Yao WANG1(),Jianghuan CHEN1,Yanli REN2,*()   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Received:2022-09-23 Online:2023-06-20 Published:2023-05-23
  • Contact: Yanli REN E-mail:wangyao@nuist.edu.cn;renyanlisx@163.com

Abstract:

The concept of quasi-J-clean rings is introduced using quasi-idempotent elements. Some examples of quasi-J-clean rings are given and their basic properties are discussed. The following results are proved. (1) If R is a quasi-J-clean ring, then the full matrix ring Mn(R) is a quasi-J-clean ring; (2) A ring R is a UJ-ring if and only if all quasi-clean elements in R are quasi-J-clean elements; (3) If R is a commutative ring, then the necessary and sufficient condition for R to be a quasi-J-clean ring is that R/I=J(R/I)∪U(R/I) if I is an ideal of R contained in J(R) and such that R/I is an indecomposable ring.

Key words: quasi-idempotent element, quasi-J-clean ring, UJ-ring

CLC Number: 

  • O153.3
1 NICHOLSONW K .Lifting idempotents and exchange rings[J].Trans Amer Math Soc,1977,229(5):269-278.
2 CAMILLOV P , YUH .Exchange rings, units and idempotents[J].Comm Algebra,1994,22(12):4737-4749.
doi: 10.1080/00927879408825098
3 CHENHuanyin .On strongly J-clean rings[J].Comm Algebra,2010,38(10):3790-3804.
doi: 10.1080/00927870903286835
4 TANGGaohua , SUHuadong , YUANPingzhi .Quasi-clean rings and strongly quasi-clean rings[J].Comm Contemp Math,2021,1-19.
5 CHENHuanyin , GURGUNO , HALICIOGLUS ,et al.Rings in which nilpotents belong to Jacobson radical[J].An Ştiinţ, Univ Al I Cuza Iaşi Mat (N.S.),2016,62(2):595-606.
6 KIMN K , LEEY .Extensions of reversible rings[J].J Pure Appl Algebra,2003,185,207-223.
doi: 10.1016/S0022-4049(03)00109-9
7 王尧, 周昊, 任艳丽.环R{D, C}的一些性质[J].数学的实践与认识,2020,50(12):173-181.
WANGYao , ZHOUHao , RENYanli .Some properties of ring R{D, C}[J].Math Prac Theory,2020,50(12):173-181.
8 胡小美, 陈焕艮.关于JR环[J].杭州师范大学学报(自然科学版),2017,16(6):628-633.
doi: 10.3969/j.issn.1674-232X.2017.06.011
HUXiaomei , CHENHuanyin .On JR-rings[J].J Hangzhou Normal Univ (Nature Science Edition),2017,16(6):628-633.
doi: 10.3969/j.issn.1674-232X.2017.06.011
9 ANDERSON F W, FULLER K R. Rings and categories of modules[M]. [s. l. ]: Springer, 1974.
10 KOSANT , LEROYA , MATCZUKJ .On UJ-rings[J].Comm Algebra,2018,46(5):2297-2303.
doi: 10.1080/00927872.2017.1388814
11 XIANGXueming , OUYANGLunqun .J-clean and strongly J-clean rings[J].Comm Math Res,2018,34(3):241-252.
12 ANDERSOND D , CAMILLOV P .Commutative rings whose elements are a sum of an unit and an idempotent[J].Comm Algebra,2002,30(7):3327-3336.
doi: 10.1081/AGB-120004490
13 AHNM S , ANDERSOND D .Weakly clean rings and almost clean rings[J].Rocky Mountain J Math,2006,36(3):783-798.
[1] YIN Jun-qi, YANG Gang. Gorenstein DG-injective complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 28-33.
[2] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[3] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[4] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[5] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[6] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[7] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[8] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[9] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[10] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[11] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[12] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[13] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[14] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[15] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[2] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[3] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[4] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[5] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[6] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[7] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[10] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .