JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (10): 31-36.doi: 10.6040/j.issn.1671-9352.0.2020.001
Previous Articles Next Articles
GUO Hui-ying, ZHANG Cui-ping*
CLC Number:
[1] AUSLAND M, BRIDGER M. Stable module theory[M] //Memo Amer Math Soc, vol. 94, Providence, RI: Amer Math Soc, 1969. [2] ENOCHS E E, JENDA O M G. Gorenstein injctive and projective modules[J]. Math Z, 1995, 220(1):611-633. [3] HOLM H. Gorenstein homological dimensions[J]. J Pure and Appl Algebra, 2004, 189(1):167-193. [4] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injctive and flat modules[J]. J Pure Appl Algebra, 2007, 210(2):437-445. [5] BENNIS D, MAHDOU N. Global Gorenstein dimensions[J]. Proc Amer Math Soc, 2010, 138:461-465. [6] REN Jie. The Ext-strongly Gorenstein projective modules[J]. Turk J Math, 2015, 39:54-62. [7] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. J Aust Math Soc, 2009, 86:323-338. [8] MAO Lixin, DING Nanqing. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Application, 2008, 7(4):491-506. [9] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy and Applications, 2010, 12(1):61-73. [10] HUANG Chaoling, WU Tongsuo. Ding projective and Ding injective dimensions[J]. Journal of Algebra, 2015, 18:1-20. [11] YANG Gang, LIU Zhongkui, LIANG L. Ding projective and Ding injective modules[J]. Colloq Algebra, 2013, 20:601-612. [12] XU Jinzhong. Flat Cover of modules[M] //Lecture Notes in Math. Vol. 1634, Berlin, New York: Springer-Verlag, 1996. [13] ENOCHS E E, JENDA O M G. Relative homlogical algebra[M] //de Gruyter Expositions in Math Vol. 30. New York: Walter de Gruyter, 2000. [14] ZHU Xiaosheng. Resolving resolution dimensions[J]. Journal of Algebra Represent Theory, 2013, 16:1165-1191. |
[1] | ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30. |
[2] | ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51. |
[3] | ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45. |
[4] | WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107. |
[5] | WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26. |
[6] | CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15. |
[7] | ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8. |
[8] | LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35. |
[9] | WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24. |
[10] | LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. |
[11] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[12] | . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17. |
[13] | SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35. |
[14] | MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23. |
[15] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
|