JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 106-121.doi: 10.6040/j.issn.1671-9352.0.2022.666

Previous Articles     Next Articles

A reaction-diffusion model of avian influenza with imperfect vaccination

Mengjie HAN(),Junli LIU*()   

  1. School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
  • Received:2022-12-16 Online:2023-10-20 Published:2023-10-17
  • Contact: Junli LIU E-mail:hmj3040508337@163.com;jlliu2008@126.com

Abstract:

In this paper, a model of avian influenza with imperfect vaccination reaction-diffusion is established to study the transmission dynamics of avian influenza in birds considering the mobility of birds and environmental heterogeneity. The global existence of the solution of the model is proved, then the basic reproduction number of the model is calculated using the spectral radius of the next generation operator, and the threshold dynamics of the model are analyzed. We also consider the case where the vaccine has 100% preventive effect on birds, the explicit expressions of the basic reproduction number and the principal eigenvalue are given, extinction and persistence of viruses are investigated. Finally, numerical simulations are carried out to analyze the transmission dynamics of avian influenza, effective control strategies for the outbreaks of avian influenza are also discussed. It shows that increasing the coverage of bird vaccination, disinfecting the environment, removing the avian influenza virus in the environment, and reducing the migration of birds are very effective to control the spread of avian influenza.

Key words: avian influenza, reaction-diffusion model, basic reproduction number, persistence

CLC Number: 

  • O175.2

Table 1

Parameter values of System (1.4)-(1.6)"

参数 Λ β θ1 θ2 βW ? c μ ξ γ
取值 2 10-9 0.3 0.3 3.55×10-9 0.32 1.5 $\frac{1}{365}$ 0.1 0.5
参数 ρ $\hat{c}$ δ k T0 T1 a b D
取值 0.4 1.4 $\frac{1}{7}$ 103 13 -18 -0.12 5.1 0.1

Fig.1

When R0 < 1, the time evolution of S(x, t) and I(x, t)"

Fig.2

When R0>1, the time evolution of S(x, t) and I(x, t)"

Fig.3

Basic reproduction number R0's sensitivity to the parameters"

1 KIM K I , LIN Zhigui , ZHANG Lai . Avian-human influenza epidemic model with diffusion[J]. Nonlinear Analysis: Real World Applications, 2010, 11 (1): 313- 322.
doi: 10.1016/j.nonrwa.2008.11.015
2 IWAMI S , TAKEUCHI Y , LIU Xianning . Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, 207 (1): 1- 25.
doi: 10.1016/j.mbs.2006.08.001
3 MORGAN I R , KELLY A P . Epidemiology of an avian influenza outbreak in Victoria in 1985[J]. Australian Veterinary Journal, 1990, 67 (4): 125- 128.
doi: 10.1111/j.1751-0813.1990.tb07727.x
4 SWAYNE D E . Pathobiology of H5N2 Mexican avian influenza virus infections of chickens[J]. Veterinary Pathology, 1997, 34 (6): 557- 567.
doi: 10.1177/030098589703400603
5 ZANELLA A , DALL'ARA P , MARTINO P A . Avian influenza epidemic in Italy due to serovar H7N1[J]. Avian Diseases, 2001, 45 (1): 257- 261.
doi: 10.2307/1593038
6 MA Xinling , WANG Wendi . A discrete model of avian influenza with seasonal reproduction and transmission[J]. Journal of Biological Dynamics, 2010, 4 (3): 296- 314.
doi: 10.1080/17513751003793009
7 VAIDYA N K , WANG Fengbin , ZOU Xingfu . Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment[J]. Discrete and Continuous Dynamical Systems: Series B, 2012, 17 (8): 2829- 2848.
doi: 10.3934/dcdsb.2012.17.2829
8 VAIDYA N K , WAHL L M . Avian influenza dynamics under periodic environmental conditions[J]. SIAM Journal on Applied Mathematics, 2015, 75 (2): 443- 467.
doi: 10.1137/140966642
9 ZHENG Tingting , NIE Linfei , ZHU Huaiping , et al. Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza[J]. Nonlinear Analysis: Real World Applications, 2022, 67, 103567.
doi: 10.1016/j.nonrwa.2022.103567
10 GULBUDAK H , MARTCHEVA M . A structured avian influenza model with imperfect vaccination and vaccine-induced asymptomatic infection[J]. Bulletin of Mathematical Biology, 2014, 76 (10): 2389- 2425.
doi: 10.1007/s11538-014-0012-1
11 BROWN J D , SWAYNE D E , COOPER R J , et al. Persistence of H5 and H7 avian influenza viruses in water[J]. Avian Diseases, 2007, 51 (Suppl.1): 285- 289.
12 LU H , CASTRO A E , PENNICK K , et al. Survival of avian influenza virus H7N2 in SPF chickens and their environments[J]. Avian Diseases, 2003, 47 (Suppl.3): 1015- 1021.
13 HINSHAW V S , WEBSTER R G , TURNER B . Water-borne transmission of influenza A viruses?[J]. Intervirology, 1979, 11 (1): 66- 68.
doi: 10.1159/000149014
14 SMITH H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Providence: American Mathematical Society, 1995.
15 MARTIN R H , SMITH H L . Abstract functional-differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society, 1990, 321 (1): 1- 44.
16 LOU Yijun , ZHAO Xiaoqiang . A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62 (4): 543- 568.
doi: 10.1007/s00285-010-0346-8
17 WU Yixiang , ZOU Xingfu . Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates[J]. Journal of Differential Equations, 2018, 264 (8): 4989- 5024.
doi: 10.1016/j.jde.2017.12.027
18 MAGAL P , ZHAO Xiaoqiang . Global attractors and steady states for uniformly persistent dynamical systems[J]. SIAM Journal on Mathematical Analysis, 2005, 37 (1): 251- 275.
doi: 10.1137/S0036141003439173
19 JIANG Jifa , LIANG Xing , ZHAO Xiaoqiang . Saddle-point behavior for monotone semiflows and reaction-diffusion models[J]. Journal of Differential Equations, 2004, 203 (2): 313- 330.
doi: 10.1016/j.jde.2004.05.002
20 HESS P. Periodic-parabolic boundary value problems and positivity[M]//Pitman Search Notes in Mathematics Series, Vol. 247, Harlow: Longman Scientific Technical, 1991.
21 THIEME H R . Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics, 2009, 70 (1): 188- 211.
doi: 10.1137/080732870
22 WANG Wendi , ZHAO Xiaoqiang . A nonlocal and time-delayed reaction-diffusion model of dengue transmission[J]. SIAM Journal on Applied Mathematics, 2011, 71 (1): 147- 168.
doi: 10.1137/090775890
23 WANG Wendi , ZHAO Xiaoqiang . Basic reproduction numbers for reaction-diffusion epidemic models[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11 (4): 1652- 1673.
doi: 10.1137/120872942
24 THIEME H R . Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[J]. Journal of Mathematical Biology, 1992, 30 (7): 755- 763.
25 PROTTER M H , WEINBERGER H F . Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984.
26 SMITH H L , ZHAO Xiaoqiang . Robust persistence for semi-dynamical systems[J]. Nonlinear Analysis: Theory, Methods and Applications, 2001, 47 (9): 6169- 6179.
doi: 10.1016/S0362-546X(01)00678-2
27 ALLEN L J S , BOLKER B M , LOU Yuan , et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete & Continuous Dynamical Systems, 2008, 21 (1): 1- 20.
28 WANG Fengbin , SHI Junping , ZOU Xingfu . Dynamics of a host-pathogen system on a bounded spatial domain[J]. Communications on Pure & Applied Analysis, 2015, 14 (6): 2535- 2560.
[1] Gang CHEN,Rui ZHANG. Dynamics of a two-strain co-infection epidemic model with vaccination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 84-96.
[2] LI Yonghua, ZHANG Cunhua. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126.
[3] LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15.
[4] WANG Yan-mei, LIU Gui-rong. Asymptotic behavior of a stochastic SIQS model with Markov switching [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 84-93.
[5] WANG Qi, JIA Jian-wen. Nontrivial periodic solution of a stochastic non-autonomous SIS model with public health education [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 28-34.
[6] FANG Shu, ZHANG Tai-lei, LI Zhi-min. Stochastic model of heroin drug dissemination with psychological effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 12-22.
[7] GAO Jian-zhong, ZHANG Tai-lei. Qualitative analysis of an SIRI epidemic model with stochastic effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 89-99.
[8] LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38.
[9] DONG Chan, ZHANG Ju-ping, LI You-wen. Study of a malaria model with population dynamic in two patches [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 74-78.
[10] CHEN Xin-yi. Dynamics of the nonautonomous predator system [J]. J4, 2013, 48(12): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[2] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[3] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[4] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[5] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[6] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[7] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[8] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[9] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[10] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .