JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (1): 100-114, 123.doi: 10.6040/j.issn.1671-9352.0.2023.049

Previous Articles     Next Articles

Platform supply chain network operation decision based on blockchain technology under cap-and-trade regulation

Cong SHI(),Guitao ZHANG*(),Xiao ZHANG,Shuaicheng LIN   

  1. School of Business, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2023-02-14 Online:2024-01-20 Published:2024-01-19
  • Contact: Guitao ZHANG E-mail:ssc0748@126.com;zhangguitao@qdu.edu.cn

Abstract:

Under the cap-and-trade regulation, based on Nash non-cooperative game theory and variational inequality theory, considering supplier's misrepresentation of carbon caps during the initial allocation and the demand of green information sensitive consumers for product verification, two platform supply chain network equilibrium models with and without blockchain technology are constructed. Then this paper explores and compares the equilibrium conditions of supply chain members and blockchain technology application thresholds before and after the application of blockchain technology. The modified contraction projection algorithm is used to solve the problem and some numerical examples are given to show that: the application of blockchain technology can avoid the inconsistency of carbon emission trading volume, further reduce the waste of resources and improve the profit of the supply chain. The supplier's misrepresentation of the carbon cap can to some extent improve the overall profit of the supply chain, but it inhibits the ability of the supply chain to achieve higher profits. Within a certain threshold of blockchain technology operating costs, supply chain members have the motivation to adopt blockchain technology.

Key words: blockchain technology, cap-and-trade regulation, misrepresentation of carbon cap, green information sensitivity, platform supply chain network equilibrium

CLC Number: 

  • F272.3

Fig.1

Structure diagram of platform supply chain network"

Table 1

Basic parameters"

符号含义
ss个供应商,s=1, 2, …, S
jj个高排放型制造商,j=1, 2, …, J
ii个低排放型制造商,i=1, 2, …, I
e电商平台
c“全碳链”服务中心
k需求市场,k=1, 2, …, K
CsX政府免费给供应商发放的碳配额
Cy政府免费给2类制造商发放的碳配额,y=j, i
αz1生产单位原材料或新产品的碳排放量,z=s, j, i
αy2回收再制造环节单位产品的碳排放量,y=j, i
ε供应商与2类制造商交易时“全碳链”服务中心收取的单位碳交易佣金
ω单位碳交易价格
η原材料转化率,η∈(0, 1)
μ最低回收率,μ∈(0, 1)
β理论再制造率,β∈(0, 1)
ϕ供应商碳谎报失败的概率,ϕ∈(0, 1)
r减排技术投资系数
δ电商平台收取的佣金率,δ∈(0, 1)
t检测信息花费的时间
sc服务水平的影响因子
hX检测出正品的概率,hX=(0, 1]
$\vartheta^{X}$单位碳交易价格的溢价程度,$\vartheta^{X}$∈[1, 2]
cB单位区块链运营成本;参考Yang等[24]和Niu等[25]的研究,本文认为区块链技术为供应商和制造商提供每件产品的信息追踪认证,并收取单位服务费(也指每件产品额外的区块链运营成本),在本文中,供应链各方需支付各自的区块链运营费用
F政府对企业单位碳配额谎报的惩罚成本
θ消费者中对绿色产品、绿色信息感知敏感的比例,θ∈(0, 1)
τ消费者对平台服务水平的偏好,τ∈(0, 1)
γ消费者的低碳偏好,γ∈(0, 1)
g消费者对检测时间的敏感程度,g∈(0, 1)
a一个布尔变量,a=1(应用区块链技术),a=0(未应用区块链技术)

Table 2

Decision variables"

符号含义
qsyX供应商与2类制造商原材料的交易量,$y=j, i, \boldsymbol{Q}_{1}^{1 X}=(q_{s j}^{X})_{S J \times 1} \in R_{+}^{S J}, \boldsymbol{Q}_{1}^{2}=(q_{s i})_{S \times 1} \in R_{+}^{S I}$
$q_{y k}^{v X}$2类制造商利用原材料生产的产品数量,$y=j, i, \boldsymbol{q}_{1}^{\mathrm{vX}}=(q_{j \mathrm{k}}^{\mathrm{vX}})_{J K \times 1} \in R_{+}^{J K}, \boldsymbol{q}_{2}^{\mathrm{vX}}=(q_{i k}^{\mathrm{vX}})_{I K \times 1} \in R_{+}^{I K}$
$q_{y k}^{X}$2类制造商销售给需求市场k的总产品供给量,$y=j, i, \boldsymbol{Q}_{2}^{1 X}=(q_{j k}^{X})_{J K \times 1} \in R_{+}^{J K}, \boldsymbol{Q}_{2}^{2 X}=(q_{i k}^{X})_{I K \times 1} \in R_{+}^{I K}$
$q_{k y}^{X}$2类制造商从需求市场k回收的产品数量,$y=j, i, \boldsymbol{Q}_{3}^{1 X}=(q_{k j}^{X})_{J \times 1} \in R_{+}^{J K}, \boldsymbol{Q}_{3}^{2 X}=(q_{k i}^{X})_{I K \times 1} \in R_{+}^{I K}$
$t_{z}^{X}$供应商与2类制造商的碳交易量,$z=s, j, i, \boldsymbol{t}_{1}^{X}=(t_{s}^{X})_{S \times 1} \in R_{+}^{S}, \boldsymbol{t}_{2}^{X}=(t_{j})_{J \times 1} \in R_{+}^{J}, \boldsymbol{t}_{3}^{X}=(t_{i})_{I \times 1} \in R_{+}^{I}$
$e_{i}^{X}$低排放型制造商的碳减排量,$\hat{\boldsymbol{E}}^{X}=(e_{i}^{X})_{I \times 1} \in R_{+}^{I}$
$s_{\mathrm{e}}^{X}$平台提供的服务水平,$\boldsymbol{S}^{X}=(s_{\mathrm{e}}^{X})_{E \times 1} \in R_{+}^{E}$
$p_{k}^{v X}$消费者支付给两类制造商的单位产品价格,$y=j, i, \boldsymbol{P}_{1}^{X}=(p_{k}^{j X})_{K \times 1} \in R_{+}^{K}, \boldsymbol{P}_{2}^{X}=(p_{k}^{i X})_{K \times 1} \in R_{+}^{K}$

Table 3

Function symbols"

符号含义
$c_{s}^{y}=c_{s}^{y}(q_{s y}^{X})$供应商承担的与2类制造商的交易成本,$y=j, i$
$\hat{c}_{s}^{y}=\hat{c}_{s}^{y}(q_{s y}^{X})$2类制造商承担的与供应商的交易成本,$y=j, i$
$c_{y k}=c_{y k}(q_{y k}^{X})$2类制造商承担的与需求市场的交易成本,$y=j, i$
$\hat{c}_{y k}=\hat{c}_{y k}(q_{y k}^{X})$需求市场承担的与2类制造商的交易成本,$y=j, i$
$f_{s}=f_{s}(q_{s y}^{X})$供应商生产原材料的生产成本,$y=j, i$
$f_{y}=f_{y}(q_{y k}^{\mathrm{v} X})$2类制造商生产新产品的生产成本,$y=j, i$
$c_{k}=c_{k}(q_{k y}^{X})$2类制造商处理回收产品的处理成本,$y=j, i$
$f_{y}=f_{y}(q_{k y}^{N}, \beta)$2类制造商再制造过程中的再制造成本,$y=j, i$
$c_{\mathrm{e}}=c_{\mathrm{e}}(s_{\mathrm{e}}^{X}, s_{\mathrm{c}})$电商平台的基础服务投资成本
$w_{\mathrm{e}}=w_{\mathrm{e}}(q_{j k}^{X}, q_{i k}^{X}, s_{\mathrm{e}}^{X})$电商平台的流量收益
$c_{z}^{t}=c_{z}^{t}(t_{z}^{X})$由“全碳链”服务中心承担的与供应商与2类制造商的碳交易成本,$z=s, j, i$
$d_{k}^{y}(q_{y k}^{X})$需求市场对2类制造商生产产品的需求量,$y=j, i$
$\rho_{s y}^{X}$供应商与2类制造商之间的单位原材料价格,$y=j, i$
$\rho_{y k}^{X}$2类制造商生产的新产品的单位零售价格,$y=j, i$
$\rho_{k y}^{X}$2类制造商回收废旧产品的单位价格,$y=j, i$

Table 4

Impact of supplier misreporting Cs on the equilibrium results of N and B models"

参数CsXqsjX*qsiX*qjkX*qikX*qjkvX*qikvX*qkjX*qkiX*tsX*tjX*tiX*
B模型5.000 01.541 03.304 21.998 44.28 51.386 92.973 80.679 51.456 93.721 31.364 45.085 7
6.000 01.277 23.108 31.656 34.030 91.149 52.797 40.563 21.370 51.893 90.754 25.285 9
6.100 01.277 43.108 41.656 54.031 11.149 62.797 60.563 21.370 61.794 40.754 65.285 7
6.200 01.277 53.108 61.656 84.031 31.149 82.797 70.563 31.370 61.695 00.755 05.285 5
N模型6.300 01.277 73.108 71.657 04.031 51.149 92.797 90.563 41.370 71.595 60.755 45.285 3
6.400 01.277 93.108 91.657 24.031 71.150 12.798 00.563 41.370 81.496 20.755 85.285 1
6.500 01.278 03.109 11.657 44.031 91.150 22.798 20.563 51.370 91.396 80.756 25.284 9
6.600 01.278 23.109 21.657 64.032 11.150 42.798 30.563 61.370 91.297 40.756 55.284 7
参数CsXpkjX*pkiX*seX*eiX*πsX*πjX*πiX*πcX*πeX*πX*
B模型5.000 028.782 038.941 010.000 02.396 925.587 633.103 8165.993 08.156 5102.443 0335.254 0
6.000 028.895 037.778 010.000 02.341 437.224 828.948 4107.379 014.062 980.300 8267.915 0
6.100 028.895 037.777 410.000 02.341 437.460 328.953 1107.386 013.871 880.307 0267.978 0
6.200 028.895 037.777 210.000 02.341 437.695 828.957 7107.394 013.680 480.313 1268.041 0
N模型6.300 028.894 037.777 110.000 02.341 437.931 228.962 3107.402 013.488 580.319 2268.103 0
6.400 028.894 037.769 010.000 02.341 438.166 728.966 9107.410 013.296 380.325 3268.165 0
6.500 028.894 037.776 010.000 02.341 538.402 028.972 0107.420 013.104 080.331 0268.230 0
6.600 028.894 037.776 710.000 02.341 538.637 728.976 1107.426 012.910 680.337 5268.287 0

Fig.2

Impact of blockchain operating cost cB on product trading volume of supply chain members"

Fig.3

Impact of blockchain operating cost cB on carbon trading volume of supply chain members"

Fig.4

Impact of blockchain operating cost cB on the profits of supply chain members"

1 齐旭. 碳交易: 区块链初试牛刀[N/OL]. 中国电子报, 2022-07-12[2022-12-20]. https://baijiahao.baidu.com/s?id=1737472368539899401&wfr=spider&for=pc.
QI Xu. Carbon emission trading: blockchain's first try[N/OL]. China Electronics News, 2022-07-12[2022-12-20]. https://baijiahao.baidu.com/s?id=1737472368539899401&wfr=spider&for=pc.
2 中国青年报. 在碳排放报告上弄虚作假, 四家机构被生态环境部通报[N/OL]. (2022-03-04)[2023-06-20]. https://baijiahao.baidu.com/s?id=1727262476917282097&wfr=spider&for=pc.
China Youth Daily. Four institutions have been notified by the Ministry of Ecology and Environment for falsification in carbon emission reports[N/OL]. (2022-03-04)[2023-06-20]. https://baijiahao.baidu.com/s?id=1727262476917282097&wfr=spider&for=pc.
3 杨磊,郑晨诗,纪静娜.碳信息不对称下的供应链谎报决策与协调研究[J].中国管理科学,2016,24(4):111-120.
YANGLei,ZHENGChenshi,JIJingna.Misreporting decisions and coordination in supply chain under asymmetric carbonInformation[J].Chinese Journal of Management Science,2016,24(4):111-120.
4 周艳菊,吴龙健.碳限额交易机制下碳信息不对称对供应链的影响研究[J].工业工程与管理,2017,22(4):68-78.
ZHOUYanju,WULongjian.Supply chain analysis under carbon information asymmetry based on carbon cap-and-trade[J].Industrial Engineering and Management,2017,22(4):68-78.
5 张令荣,刘笑言,王锋,等.碳配额交易政策下闭环供应链谎报决策与协调研究[J].管理工程学报,2023,37(4):196-205.
ZHANGLingrong,LIUXiaoyan,WANGFeng,et al.Research on misreporting strategies and coordination of closed-loop supply chain under cap-and-trade policy[J].Journal of Industrial Engineering and Engineering Management,2023,37(4):196-205.
6 陆菊春,张瑞雪.碳排放权初始分配中防范企业逆向选择的演化博弈[J].北京理工大学学报(社会科学版),2016,18(4):28-35.
LUJuchun,ZHANGRuixue.Evolutionary game analysis to prevent enterprise adverse selection in the initial allocation of carbon emission rights[J].Journal of Beijing Institute of Technology (Social Sciences Edition),2016,18(4):28-35.
7 XUXiaoping,CHOIT M.Supply chain operations with online platforms under the cap-and-trade regulation: impacts of using blockchain technology[J].Transportation Research Part E: Logistics and Transportation Review,2021,155,102491.
doi: 10.1016/j.tre.2021.102491
8 LIUJiaguo,ZHAOHuida,CHENJihong.Blockchain-driven win-win strategy of economy and environment in the asymmetric competitive supply chain[J].Computers & Industrial Engineering,2023,176,108978.
9 TSAIC H.Supply chain financing scheme based on blockchain technology from a business application perspective[J].Annals of Operations Research,2023,320(1):441-472.
doi: 10.1007/s10479-022-05033-3
10 WANGJun,ZHANGQian,HOUPengwen.Combating deceptive counterfeits with blockchain technology under asymmetric information[J].IEEE Transactions on Engineering Management,2022,1-13.
11 邹梓琛, 刘名武, 林强, 等. 低碳感知差异下制造商嵌入区块链的两产品供应链决策[J/OL]. 计算机集成制造系统: 1-23[2023-06-20]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230410.1502.020.html.
ZOU Zichen, LIU Mingwu, LIN Qiang, et al. Blockchain-embedded two-product supply chain decision making for manufacturers with low carbon perception differences[J/OL]. Computer Integrated Manufacturing Systems: 1-23[2023-06-20]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230410.1502.020.html.
12 王君,张倩,侯棚文.质量信息不对称下零售商基于区块链技术的信息揭示策略[J].管理工程学报,2023,37(4):153-164.
WANGJun,ZHANGQian,HOUPengwen.Retailer's information acquisition strategy based on blockchain technology under quality information asymmetry[J].Journal of Industrial Engineering and Engineering Management,2023,37(4):153-164.
13 杨仕辉,余敏.碳配额不同分配机制下供应链碳减排优化策略[J].经济与管理评论,2016,32(6):35-42.
YANGShihui,YUMin.Optimal carbon emission reduction decisions in supply chain under different allocation mechanism of carbon quota[J].Review of Economy and Management,2016,32(6):35-42.
14 XIALiangjie,GUOTingting,QINJuanjuan,et al.Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system[J].Annals of Operations Research,2018,268(1):149-175.
15 普华永道. 《2021年全球消费者洞察调研》中国报告[EB/OL]. (2022-11-01)[2023-01-01]. https://www.pwccn.com/zh/industries/retail-and-consumer/publications/consumer-insights-survey-2021-china-report.html.
Pricewaterhouse Coopers. 2021 Global Consumer Insight Survey China Report[EB/OL]. (2022-11-01)[2023-01-01]. https://www.pwccn.com/zh/industries/retail-and-consumer/publications/consumer-insights-survey-2021-china-report.html.
16 孙嘉轶,杨露,姚锋敏.考虑低碳偏好及碳减排的闭环供应链回收及专利授权策略[J].运筹与管理,2022,31(9):120-127.
SUNJiayi,YANGLu,YAOFengmin.Recovery and patent authorization strategy for closed-loop supply chain considering low carbon preference and carbon emission reduction[J].Operations Research and Management Science,2022,31(9):120-127.
17 蒋雷勇,孙立成.异质性减排政策下考虑消费者低碳偏好的供应链决策研究[J].工业工程,2022,25(3):164-172.
JIANGLeiyong,SUNLicheng.A research on supply chain decision taking into account consumers' low carbon preference under heterogeneous emission reduction policies[J].Industrial Engineering Journal,2022,25(3):164-172.
18 SUNLicheng,CAOXiaoxiao,ALHARTHIM,et al.Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers[J].Journal of Cleaner Production,2020,264,121664.
19 QIANX H,CHANF T S,ZHANGJ H,et al.Channel coordination of a two-echelon sustainable supply chain with a fair-minded retailer under cap-and-trade regulation[J].Journal of Cleaner Production,2020,244,118715.
20 张桂涛,王广钦,赵欣语,等.碳配额交易体系下闭环供应链网络的生产与碳交易策略研究[J].中国管理科学,2021,29(1):97-108.
ZHANGGuitao,WANGGuangqin,ZHAOXinyu,et al.Production and carbon trading strategy of closed-loop supply chain network under cap-and-trade system[J].Chinese Journal of Management Science,2021,29(1):97-108.
21 杨翱.不同碳配额分配方式的中国经济波动效应研究[J].数量经济技术经济研究,2022,39(6):81-99.
YANGAo.Study on China's economic fluctuation under different carbon quota allocation methods[J].The Journal of Quantitative & Technical Economics,2022,39(6):81-99.
22 巫瑞,夏西强,曾庆丽.碳配额分配方式对碳减排影响对比分析[J].工业技术经济,2023,42(2):37-47.
WURui,XIAXiqiang,ZENGQingli.Comparative analysis of the effect of carbon quota allocation on carbon emission reduction[J].Journal of Industrial Technological Economics,2023,42(2):37-47.
23 NAGURNEYA,DONGJ,ZHANGDing.A supply chain network equilibrium model[J].Transportation Research Part E: Logistics and Transportation Review,2002,38(5):281-303.
24 YANGLu,ZHANGJun,SHIXiutian.Can blockchain help food supply chains with platform operations during the COVID-19 outbreak?[J].Electronic Commerce Research and Applications,2021,49,101093.
25 NIUBaozhuang,MUZihao,CAOBin,et al.Should multinational firms implement blockchain to provide quality verification?[J].Transportation Research Part E: Logistics and Transportation Review,2021,145,102121.
26 NAGURNEYA,ZHAOL.Variational inequalities and networks in the formulation and computation of market equilibria and disequilibria: the case of direct demand functions[J].Transportation Science (INFORMS),1993,27(1):4-15.
[1] Youguo JING,Junling REN,Xiaoyang LIU,Hailong WANG,Jian SONG. Channel entry and buyback strategies of heterogeneous products under mixed leasing and retail channels [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 1-17.
[2] Yun-miao GUI,Da-yu LIU,Hong-chun HU. Value-added service investment and pricing of logistics service platform under dynamic competition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 12-22.
[3] ZHANG Ke-yong, ZHANG Na. Green supply chain pricing and coordination with reciprocal preferences under government subsidies [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 30-41.
[4] GUI Yun-miao, HU Hong-chun, GONG Ben-gang. Research on information disclosure decision of bilateral platform in the blockchain era [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZOU Guo-ping1, MA Ru-ning1, DING Jun-di2, ZHONG Bao-jiang3. Image retrieval based on saliency weighted color and texture[J]. J4, 2010, 45(7): 81 -85 .
[2] CHEN Li . The robust fault diagnosis filter design for uncertain singular systems[J]. J4, 2007, 42(7): 62 -65 .
[3] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP[J]. J4, 2010, 45(7): 50 -54 .
[4] ZHANG De-yu,ZHAI Wen-guang . [J]. J4, 2006, 41(5): 4 -07 .
[5] YANG Jianhui1, ZHANG Jianping, CHENG Xinlu, YANG Xiangdong. Magnetic dipole transitions among 1s22s2p 3P0, of Be-like ions[J]. J4, 2009, 44(11): 29 -34 .
[6] PANG Yong,MU Zong-zhao,WANG Yue-hai,BAO Yu-hai,SUN Lei . Transpiration characteristics and its influencing factors of sixteen polar clones[J]. J4, 2006, 41(6): 168 -172 .
[7] WANG Ting-ming,LI Bo-tang . Proof of a class of matrix rank identities[J]. J4, 2007, 42(2): 43 -45 .
[8] FU Yonghong 1, YU Miaomiao 2*, TANG Yinghui 3, LI Cailiang 4. [J]. J4, 2009, 44(4): 72 -78 .
[9] ZENG Weng-fu1, HUANG Tian-qiang1,2, LI Kai1, YU YANG-qiang1, GUO Gong-de1,2. A local linear emedding agorithm based on harmonicmean geodesic kernel[J]. J4, 2010, 45(7): 55 -59 .
[10] YI Chao-qun, LI Jian-ping, ZHU Cheng-wen. A kind of feature selection based on classification accuracy of SVM[J]. J4, 2010, 45(7): 119 -121 .