JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 116-124.doi: 10.6040/j.issn.1671-9352.0.2023.186

Previous Articles    

Hopf bifurcation of Brusselator model with cross-diffusion and delay

YANG Xiunan, XING Hui*   

  1. School of Science, Xian Polytechnic University, Xian 710048, Shaanxi, China
  • Published:2025-07-25

Abstract: In this paper, the Brusselator model with cross-diffusion and delay are studied. Firstly, by analyzing the distribution of the roots of the characterstic equation of the system using linearization method, the local asymptotic stability of the system and the existence of Hopf bifurcation at the unique positive equilibrium point are obtained. Then the effect of time delay parameters on the existence of Hopf bifurcation is analyzed. Finally, numerical simulation is carried out to support the theoretical results using MATLAB.

Key words: Brusselator model, cross-diffusion, delay, Hopf bifurcation

CLC Number: 

  • O175
[1] PRIGOGENE I, LEFEVER R. Symmetry breaking instabilities in dissipative system [J]. The Journal of Chemical Physics, 1968, 48(4):1665-1700.
[2] MURRAY J D. Mathematical biology I: an introduction [M]. 3rd ed. New York: Springer, 2002:175-217.
[3] ERNEUX T, REISS E. Brussellator isolas[J]. SIAM Journal on Applied Mathematics, 1983, 43(6):1240-1246.
[4] LI Y. Hopf bifurcations in general systems of Brusselator type[J]. Nonlinear Analysis: Real World Applications, 2016, 28:32-47.
[5] GHERGU M. Steady-state solutions for a general Brusselator system[J]. Operator Theory: Advances and Application, 2011, 216:153-166.
[6] LI B, WANG M X. Diffusion-driven instability and Hopf bifurcation in Brusselator system[J]. Applied Mathematics and Mechanics, 2008, 29(6):825-832.
[7] PENG R, WANG M X. Pattern formation in the Brusselator system[J]. Journal of Mathematical Analysis and Applications, 2005, 309:151-166.
[8] 郭改慧,李兵方. 具有扩散的Brusselator系统的Hopf分支[J]. 应用数学,2011,24(3):467-473. GUO Gaihui, LI Bingfang. Hopf bifurcation in the Brusselator system with diffusion[J]. Mathematica Applicata, 2011, 24(3):467-473.
[9] LV Y H, LIU Z H. Turing-Hopf bifurcation analysis and normal form of a diffusive Brusselator model with gene expression time delay[J]. Chaos, Solitons and Fractals, 2021, 152:111478.
[10] OTT E, GREBOGI C, YORKE J A. Controlling Chaos[J]. Physical Review Letters, 1990, 64(11):1196.
[11] ALFIFI H Y. Feedback control for a diffusive and delayed Brusselator model: semi-analytical solutions[J]. Symmetry, 2021, 13(4):725-738.
[12] HU H, LI Q, LI S. Traveling and standing patterns induced by delay feedback in uniform oscillatory reaction-diffusion system[J]. Chemical Physics Letters, 2007, 447:364-367.
[13] 杨晓燕,王乔钰,许慧洁. 一类具有时滞的Brusselator模型的稳定性分析[J]. 陕西理工大学学报(自然科学版),2020,36(3):88-92. YANG Xiaoyan, WANG Qiaoyu, XU Huijie. Stability analysis of a class of Brusselator models with time delay[J]. Journal of Shaanxi University of Technology(Natural Science Edition), 2020, 36(3):88-92.
[14] GUREVICH S V, FRIEDRICH R. Instabilities of localized structures in dissipative systems with delayed feedback[J]. Physical Review Letters, 2013, 110(1):014101.
[15] GUREVICH S V. Time-delayed feedback control of breathing localized structures in a three-component reaction-diffusion system[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2027): 20140014.
[16] YADAV O P, JIWARI R A. Finite element approach to capture Turing patterns of autocatalytic Brusselator model[J]. Journal of Mathematical Chemistry, 2019, 57: 769-789.
[17] WOOLLEY T E, BAKER R E, GAFFNEY E A, et al. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems[J]. Physical Review E, 2012, 85(5):051914.
[18] SEIRIN LEE S, GAFFNEY E A. Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays[J]. Bulletin of mathematical biology, 2010, 72:2161-2179.
[19] BERETTA E, KUANG Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters[J]. SIAM Journal on Mathematical Analysis, 2002, 33(5):1144-1165.
[1] XU Yingting, ZHAO Jiantao, WEI Xin. Dynamical analysis in a diffusive predator-prey model with cooperative hunting and group defense [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(4): 104-117.
[2] LUO Yihua, DU Yanfei. Hopf bifurcation in a diffusive generalist predator-prey system with nonlocal competition and time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(4): 72-83.
[3] Feng ZHANG,Jiawei LIANG. Sufficient maximum principle for one kind of nonzero-sum stochastic differential game involving noisy memory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 46-52.
[4] Yiyan WANG,Dongxia ZHAO,Caixia GAO. On ramp control of ARZ traffic flow model based on time-delay feedback [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 64-73, 88.
[5] Yujiao SONG,Qingyuan QI. Optimal local and remote control for multiplicative noise stochastic systems with packet loss and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 53-63.
[6] Xiao WANG,Chongyang LIU,Dianzhong HU,Gang LIU. Delay optimal control of 1,3-propanediol batch fermentation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 124-131, 138.
[7] Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103.
[8] Pan SUN,Xuping ZHANG. Continuous dependence of solution for impulsive evolution equations with infinite delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 77-83, 91.
[9] XU Yue, HAN Xiaoling. Impact of media effects with dual delays on control of echinococcosis in Tibet [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 53-62.
[10] Jinpeng QIU,Zonggang LI,Yinjuan CHEN,Yajiang DU. Fixed-time consensus control for high-order multi-agent systems with input delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 167-176.
[11] Gaihui GUO,Jingjing WANG,Wangrui LI. Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 32-42, 53.
[12] Yonghua LI,Cunhua ZHANG. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126.
[13] Lei LI,Yongsheng YE. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74.
[14] HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24.
[15] PANG Yu-ting, ZHAO Dong-xia, BAO Fang-xia. Stability of the bidirectional ring networks with multiple time delays and multiple parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!