JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (4): 104-117.doi: 10.6040/j.issn.1671-9352.0.2023.511
XU Yingting, ZHAO Jiantao, WEI Xin*
CLC Number:
[1] LOTKA A J. Elements of physical biology[M]. Baltimore Maryland: Williams & Wilkins, 1925. [2] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1927, 119(2983):12-13. [3] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1):65-75. [4] HOLLING C S. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly[J]. The Canadian Entomologist, 1959, 91(5):293-320. [5] KAZARINOFF N D, VAN DEN DRIESSCHE P. A model predator-prey system with functional response[J]. Mathematical Biosciences, 1978, 39(1/2):125-134. [6] TURCHIN P. Complex population dynamics: a theoretical/empirical synthesis(MPB-35)[M]. New Jersey: Princeton University Press, 2013. [7] SCHMIDT P A, MECH L D. Wolf pack size and food acquisition[J]. The American Naturalist, 1997, 150(4):513-517. [8] SCHEEL D, PACKER C. Group hunting behaviour of lions: a search for cooperation[J]. Animal Behaviour, 1991, 41(4):697-709. [9] COURCHAMP F, MACDONALD D W. Crucial importance of pack size in the African wild dog Lycaon pictus[C] //Animal Conservation Forum. Cambridge: Cambridge University Press, 2001:169-174. [10] BEREC L. Impacts of foraging facilitation among predators on predator-prey dynamics[J]. Bulletin of Mathematical Biology, 2010, 72:94-121. [11] ALVES M T, HILKER F M. Hunting cooperation and Allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419:13-22. [12] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Analysis: Real World Applications, 2012, 13(4):1837-1843. [13] BULAI I M, VENTURINO E. Shape effects on herd behavior in ecological interacting population models[J]. Mathematics and Computers in Simulation, 2017, 141:40-55. [14] DJILALI S. Impact of prey herd shape on the predator-prey interaction[J]. Chaos, Solitons and Fractals, 2019, 120:139-148. [15] FREEDMAN H I, WOLKOWICZ G S K. Predator-prey systems with group defence: the paradox of enrichment revisited[J]. Bulletin of Mathematical Biology, 1986, 48(5/6):493-508. [16] KOOI B W, VENTURINO E. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey[J]. Mathematical Biosciences, 2016, 274:58-72. [17] RAW S N, MISHRA P, KUMAR R, et al. Complex behavior of prey-predator system exhibiting group defense: a mathematical modeling study[J]. Chaos, Solitons and Fractals, 2017, 100:74-90. [18] XU Chaoqun, YUAN Sanling, ZHANG Tonghua. Global dynamics of a predator-prey model with defense mechanism for prey[J]. Applied Mathematics Letters, 2016, 62:42-48. [19] VENTURINO E, PETROVSKII S. Spatiotemporal behavior of a prey-predator system with a group defense for prey[J]. Ecological Complexity, 2013, 14:37-47. [20] DU Yanfei, NIU Ben, WEI Junjie. A predator-prey model with cooperative hunting in the predator and group defense in the prey[J]. Discrete & Continuous Dynamical Systems-Series B, 2022, 27(10). [21] SONG Yongli, ZHANG Tonghau, PENG Yahong. Turing-Hopf bifurcation in the reaction-diffusion equations and its applications[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 33:229-258. |
[1] | MA Tiantian, LI Shanbing. Coexistence solutions of a predator-prey model with Allee effect and density-dependent diffusion in the predator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(4): 84-92. |
[2] | ZHANG Zhaoliu, FAN Xiaoming. European option pricing under double Heston jump-diffusion model with generalized fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(3): 60-68. |
[3] | Wenhui DU,Xiangtuan XIONG. Iterated fractional Tikhonov method for simultaneous inversion of the source term and initial data in time-fractional diffusion equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 77-83. |
[4] | Yufeng ZHAO,Guirong LIU. Stationary distribution and probability density function of a stochastic predation system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 74-88. |
[5] | Lulu AI,Yunxian LIU. An ultra-weak discontinuous Galerkin method for drift-diffusion model of semiconductor problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 10-21. |
[6] | XIAO Hong-dan, LIU Yun-xian. Local discontinuous Galerkin method and numerical simulation of semiconductor drift-diffusion model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 1-7. |
[7] | Yonghua LI,Cunhua ZHANG. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126. |
[8] | Hang ZHANG,Yujuan JIAO,Jinmiao YANG. Existence of traveling wave solutions for a diffusive predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 97-105. |
[9] | Mengjie HAN,Junli LIU. A reaction-diffusion model of avian influenza with imperfect vaccination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 106-121. |
[10] | Lei LI,Yongsheng YE. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74. |
[11] | Qian CAO,Yanling LI,Weihua SHAN. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53. |
[12] | HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24. |
[13] | SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90. |
[14] | HAN Zhuo-ru, LI Shan-bing. Positive solutions of predator-prey model with spatial heterogeneity and hunting cooperation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 35-42. |
[15] | AN Xiang, GUO Jing-jun. Pricing and simulation of lookback options under the mixed sub-fractional jump-diffusion model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 100-110. |
|