JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 60-68.doi: 10.6040/j.issn.1671-9352.0.2024.277

• Financial Mathematics • Previous Articles     Next Articles

European option pricing under double Heston jump-diffusion model with generalized fractional Brownian motion

ZHANG Zhaoliu, FAN Xiaoming*   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
  • Published:2025-03-10

Abstract: First, a double Heston jump-diffusion model based on generalized fractional Brownian motion is proposed under the risk-neutral probability measure, and the corresponding European call option pricing formula of the model is introduced by solving the partial differential equation system of the characteristic function. The Monte Carlo simulation verifies the accuracy of the European option pricing formula. The rationality and effectiveness of the established option pricing model are verified by numerical analysis, and the influence of generalized fractional Brownian motion parameter H and volatility on option price is discussed.

Key words: option pricing, generalized fractional Brownian motion, double Heston model, jump-diffusion model

CLC Number: 

  • O211.61
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654.
[2] MANDELBROT B B, VAN N J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4):422-437.
[3] BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Sub-fractional Brownian motion and its relation to occupation times[J]. Statistics & Probability Letters, 2004, 69(4):405-419.
[4] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2):125-144.
[5] 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 山东大学学报(理学版),2022,57(4):100-110. AN Xiang, GUO Jingjun. Pricing and simulation of lookback options under the mix sub-fractional jump-diffusion model[J]. Journal of Shandong University(Natural Science), 2022, 57(4):100-110.
[6] CHENG Panhong, XU Zhihong, DAI Zexing. Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment[J]. Mathematics and Financial Economics, 2023, 17(3):429-455.
[7] JI Binxin, TAO Xiangxing, JI Yanting. Barrier option pricing in the sub-mixed fractional Brownian motion with jump environment[J]. Fractal and Fractional, 2022, 6(5):244.
[8] CHRISTOFFERSEN P, HESTON S, JACOBS K. The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well[J]. Management Science, 2009, 55(12):1914-1932.
[9] CHANG Ying, WANG Yiming, ZHANG Sumei. Option pricing under double Heston jump-diffusion model with approximative fractional stochastic volatility[J]. Mathematics, 2021, 9(2):126.
[10] ZILI M. Generalized fractional Brownian motion[J]. Modern Stochastics: Theory and Applications, 2017, 4(1):15-24.
[11] ARANEDA A A. Price modelling under generalized fractional Brownian motion[EB/OL].(2021-08-21)[2024-08-05].http://arxiv.org/abs/2108.12042.
[12] GUO Jingjun, WANG Yubing, KANG Weiyi. Pricing European option under the generalized fractional jump-diffusion model[J]. Fractional Calculus and Applied Analysis, 2024, 27(4):1917-1947.
[13] 吴胤昊,陈荣达,汪圣楠. 随机利率随机波动率混合指数跳扩散模型下的期权定价[J]. 系统科学与数学,2022,42:2207-2234. WU Yinhao, CHEN Rongda, WANG Shengnan. Option pricing under the mixed-exponential jump diffusion model with stochastic internet rate and stochastic volatility[J]. Journal of Systems Science and Mathematical, 2022, 42:2207-2234.
[14] DUFFIE D, PAN J, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6):1343-1376.
[1] Yaru ZHANG,Li XIA,Dianqiu ZHANG. Perpetual American lookback option pricing under mixed bi-fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 98-107.
[2] AN Xiang, GUO Jing-jun. Pricing and simulation of lookback options under the mixed sub-fractional jump-diffusion model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 100-110.
[3] PENG Bo, GUO Jing-jun. Asset pricing and simulation under the environment of jumping and mixed Gaussian process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 105-113.
[4] CHEN Li, LIN Ling. Stock option pricing with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 36-41.
[5] LI Guo-cheng, WANG Ji-xia. Calibrating option pricing models with cross entropy bat algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 80-89.
[6] ZHANG Hui1, 2, MENG Wen-yu1, LAI Xiang3. Dynamic pricing model of the reload stock option with two barriers under Knightian uncertainty
— the method of option pricing based on the solution of BSDE
[J]. J4, 2011, 46(3): 52-57.
[7] MIAO Jie 1, SHI Ke 2, CAI Hua 1. The pricing of bond with attached warrant under the jump-diffusion model [J]. J4, 2010, 45(8): 109-117.
[8] CHEN Xiang-li. Vulnerable options fractional pricing model under corporate value stucture [J]. J4, 2010, 45(11): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Kang, LI Hua. Analysis of the compound Haqing injection with hyphenated chromatography and chemometric resolution[J]. J4, 2009, 44(11): 16 -20 .
[2] CHEN Li, . Singular LQ suboptimal control problem with disturbance rejection[J]. J4, 2006, 41(2): 74 -77 .
[3] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[4] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[5] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method[J]. J4, 2010, 45(6): 81 -85 .
[6] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[7] MA Jian-ling . Spectral characterization of the rhomb-type achromatic retarder[J]. J4, 2007, 42(7): 27 -29 .
[8] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[9] SHI Chang-guang . Multi-soliton solution of the Faddeev model[J]. J4, 2007, 42(7): 38 -40 .
[10] MA Jie-xiong,JIANG Li,QI Yu-yu,XIANG FEng-ning,XIA Guang-min . The growth of calli and regenerated plantlets of Gentiana Przewalskii Maxim. and the constituents analysis of its two effective components[J]. J4, 2006, 41(6): 157 -160 .