JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 135-142.doi: 10.6040/j.issn.1671-9352.0.2023.337

Previous Articles    

Existence of forced waves for a predator-prey system in a discrete shifting habitat

ZHU Qiaoling, SHI Zhenxia*   

  1. College of Mathematical and Physical, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2025-07-25

Abstract: This paper studies a three-species predator-prey model in discrete patch environments, the existence of forced waves is obtained by using Schauders fixed point theorem and constructing appropriate upper-lower solutions.

Key words: predator-prey system, forced wave, existence, Schauder fixed-point theorem, upper-lower solutions

CLC Number: 

  • O175.8
[1] ALFARO M, BERESTYCKI H, RAOUL G. The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition[J]. SIAM Journal on Mathematical Analysis, 2017, 49(1):562-596.
[2] BERESTYCKI H, DIEKMANN O, NAGELKERKE C J, et al. Can a species keep pace with a shifting climate?[J]. Bulletin of Mathematical Biology, 2009, 71(2):399-429.
[3] BERESTYCKI H, FANG J. Forced waves of the Fisher-KPP equation in a shifting environment[J]. Journal of Differential Equations, 2018, 264(3):2157-2183.
[4] ROSSI L, BERESTYCKI H. Reaction-diffusion equations for population dynamics with forced speed II-cylindrical-type domains[J]. Discrete & Continuous Dynamical Systems, 2009, 25(1):19-61.
[5] FANG Jian, LOU Yijun, WU Jianhong. Can pathogen spread keep pace with its host invasion?[J]. SIAM Journal on Applied Mathematics, 2016, 76(4):1633-1657.
[6] HU Haijun, Zou Xingfu. Existence of an extinction wave in the Fisher equation with a shifting habitat[J]. Proceedings of the American Mathematical Society, 2017, 145(11):4763-4771.
[7] YANG Yong, WU Chufen, LI Zunxian. Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change[J]. Applied Mathematics and Computation, 2019, 353:254-264.
[8] DONG Fangdi, LI Bingtuan, LI Wantong. Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat[J]. Journal of Differential Equations, 2021, 276:433-459.
[9] 张道祥,孙光讯,徐明丽,等. 带有时滞和非线性收获效应的捕食者-食饵系统的空间动力学[J]. 吉林大学学报(理学版),2018,56(3):515-522. ZHANG Daoxiang, SUN Guangxun, XU Mingli, et al. Spatial dynamics in predator-prey system with time delay and nonlinear harvesting effect[J]. Journal of Jilin University(Science Edition), 2018, 56(3):515-522.
[10] ZHNG Zewei, WANG Wendi, YANG Jiangtao. Persistence versus extinction for two competing species under a climate change[J]. Nonlinear Analysis(Modelling and Control), 2017, 22(3):285-302.
[11] WANG Jiabin, WU Chufen. Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats[J]. Nonlinear Analysis(Real World Applications), 2021, 58:103208.
[12] CHOI W, GUO J S. Forced waves of a three species predator-prey system in a shifting environment[J]. Journal of Mathema-tical Analysis and Applications, 2022, 514(1):126283.
[13] PANG Liyan, WU Shilian. Propagation dynamics for lattice differential equations in a time-periodic shifting habitat[J]. Zeitschrift für Angewandte Mathematik und Physik, 2021, 72(3):93.
[14] 赵海琴. 二维格上时滞微分方程的行波解[J]. 咸阳师范学院学报,2010,25(4):10-12. ZHAO Haiqin. Traveling wave solutions in a 2-D lattice delayed differential equation without quasi-monotonicity[J]. Journal of Xianyang Normal University, 2010, 25(4):10-12.
[15] SHI Zhenxia, LI Wantong, CHENG Cuiping. Stability and uniqueness of traveling wavefronts in a two-dimensional lattice differential equation with delay[J]. Applied Mathematics and Computation, 2009, 208(2):484-494.
[16] CHENG Cuiping, LI Wantong, WANG Zhicheng. Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice[J]. Nonlinear Analysis(Real World Applications), 2012, 13(4):1873-1890.
[17] MA Shiwang. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem[J]. Journal of Differential Equations, 2001, 171(2):294-314.
[1] WANG Liyuan, MA Ruyun. Existence of positive solutions of a second-order Neumann boundary value problem with derivative term [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(5): 50-55.
[2] MA Tiantian, LI Shanbing. Coexistence solutions of a predator-prey model with Allee effect and density-dependent diffusion in the predator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(4): 84-92.
[3] Fangfang HU,Weimin HU,Yong ZHANG. Existence and uniqueness of positive solutions of integral boundary value problems for a class of fractional differential equations with Hadamard derivatives [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 53-61.
[4] Zhongbo CAI,Jihong ZHAO. Global existence of large solutions for a class of chemotaxis-fluid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 84-91.
[5] SHI Xuan-rong. Existence of positive solutions for a class of second order semipositone problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 89-96.
[6] ZHANG Ji-feng, ZHANG Wei, WEI Hui, NI Jin-bo. Existence and uniqueness of solutions for fractional Langevin type equations with dual anti-periodic boundary conditions involving p-Laplace operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 91-100.
[7] REN Qian, YANG He. Existence of mild solutions for a class of Riemann-Liouville fractional evolution inclusions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 76-84.
[8] DUAN Dui-hua, GAO Cheng-hua, WANG Jing-jing. Existence and nonexistence of blow-up solutions for a general k-Hessian equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 62-67.
[9] SHEN Wei, ZHANG Cun-hua. Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 42-49.
[10] OUYANG Bai-ping, XIAO Sheng-zhong. Global nonexistence of solutions to a class of semilinear double-wave equations with space-dependent coefficients on the nonlinearity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 59-65.
[11] YUAN Tian-jiao, LI Qiang. Existence of IS-asymptotically periodic mild solutions for a class of impulsive evolution equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 10-21.
[12] WU Ruo-fei. Existence of solutions for singular fourth-order m-point boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 75-83.
[13] ZHANG Rui-yan. Existence, nonexistence and multiplicity of positive solutions for a class of nonlinear third order three point boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 52-58.
[14] XU Yang, ZHAO Chun. Optimal control of competitive population system with hierarchical structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 61-70.
[15] WANG Tian-xiang, LI Yong-xiang. Existence and uniqueness of solutions for a class fourth-order periodic boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!