JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (4): 76-84.doi: 10.6040/j.issn.1671-9352.0.2021.414
REN Qian, YANG He*
CLC Number:
[1] HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific, 2000. [2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006. [3] DU Maolin, WANG Zaihua. Initialized fractional differential equations with Riemann-Liouville fractional-order derivative[J]. The European Physical Journal Special Topics, 2011, 193(1):49-60. [4] ZHOU Yong, ZHANG Lu, SHEN Xiaohui. Existence of mild solutions for fractional evolution equations[J]. Journal of Integral Equations and Applications, 2013, 4(25):557-585. [5] LAKSHMIKANTHAM V, VATSALA S A. Basic theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69(8):2677-2682. [6] AGARWAL P R, LAKSHMIKANTHAM V, NIETO J J. On the concept of solution for fractional differential equations with uncertainty[J]. Nonlinear Analysis, 2010, 72(6):2859-2862. [7] YANG Min, WANG Qiru. Approximate controllability of Riemann-Liouville fractional differential inclusions[J]. Applied Mathematics and Computation, 2016, 274:267-281. [8] LIANG Jin, YANG He. Controllability of fractional integro-differential evolution equations with nonlocal condition[J]. Applied Mathematics and Computation, 2015, 254:20-29. [9] BANAS J. On measures of noncompactness in Banach spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1980, 21(1):131-143. [10] HEINZ P H. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions[J]. Nonlinear Analysis, 1983, 7(12):1351-1371. [11] ALSARORI A N, GHADLE P K. On the mild solution for nonlocal impulsive fractional semilinear differential inclusion in Banach spaces[J]. Journal of Mathematical Modeling, 2018, 6(2):239-258. [12] KAMENSKII M, OBUKHOVSKII V, ZECCA P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces[M]. Berlin: Walter de Gruyter and Co, 2001. [13] AGARWAL P R, MEEHAN M, OREGAN D. Fixed point theory and applications[M]. Cambridge: Cambridge University Press, 2001. [14] ALSARORI A N, GHADLE P K. Nonlocal fractional differential inclusions with impulse effects and delay[J]. Journal of the Korean Society for Industrial and Applied Mathematics, 2020, 24(2):229-242. |
|