JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (8): 33-41.doi: 10.6040/j.issn.1671-9352.0.2018.707

Previous Articles     Next Articles

Positive periodic solutions for second-order singular differential equations with damping terms

CHEN Rui-peng, LI Xiao-ya   

  1. College of Mathematics and Information Science, North Minzu University, Yinchuan 750021, Ningxia, China
  • Online:2019-08-20 Published:2019-07-03

Abstract: This paper studies the existence of positive periodic solutions of u″+p(t)u'+q(t)u=f(t,u)+c(t), where p,q,c∈L1(R/TZ;R), f is a Carathéodory function and is singular when u=0. By means of the fixed point theory, several existence theorems are established for the above equation, and some recent results in the literature are generalized and improved.

Key words: positive periodic solution, existence, singularity, fixed point theory

CLC Number: 

  • O175.8
[1] FORBAT F, HUAUX A. Détermination approchée et stabilité locale de la solution périodique dune équation différentielle non linéaire[J]. Mém Public Soc Sci, Artts Lettres Hainaut, 1962, 76(2):3-13.
[2] HUAUX A. Sur Lexistence dune solution pe'riodique de l équation différentielle non linéaire (¨overx)+0.2(·overx)+x/(1-x)=(0.5)cos ωt[J]. Bull Cl Sci Acad R Belguique, 1962, 48(5):494-504.
[3] MAWHIN J. Topological degree and boundary value problems for nonlinear differential equations[M] // FURI M, ZECCA P. Topological Methods for Ordinary Differential Equations. Berlin: Springer, 1993: 74-142.
[4] LAZER A C, SOLIMINI S. On periodic solutions of nonlinear differential equations with singularities[J]. Proceedings of the American Mathematical Society, 1987, 99(1):109-114.
[5] GORDON W B. Conservative dynamical systems involving strong forces[J]. Transactions of the American Mathematical Society, 1975, 204(1):113-135.
[6] BONHEURE D, FABRY C, SMETS D. Periodic solutions of forced isochronous oscillators at resonance[J]. Discrete and Continuous Dynamical Systems, 2002, 8(4):907-930.
[7] FONDA A, MANÁSEVICH R, ZANOLIN F. Subharmonics solutions for some second order differential equations with singularities[J]. SIAM Journal on Mathematical Analysis, 1993, 24(5):1294-1311.
[8] HABETS P, SANCHEZ L. Periodic solutions of some Liénard equations with singularities[J]. Proceedings of the American Mathematical Society, 1990, 109(2):1035-1044.
[9] JIANG Daqing, CHU Jifeng, ZHANG Meirong. Multiplicity of positive periodic solutions to superlinear repulsive singular equations[J]. Journal of Differential Equations, 2005, 211(2):282-302.
[10] DELPINO M, MANÁSEVICH R. Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity[J]. Journal of Differential Equations, 1993, 103(2):260-277.
[11] DELPINO M, MANÁSEVICH R, MONTERO A. T-periodic solutions for some second order differential equations with singularities[J]. Proceedings of the Royal Society of Edinburgh(Section A), 1992, 120(1):231-243.
[12] RACHUNKOVÁ I, STANEK S, TVRDY M. Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations[M]. Amsterdam: Elsevier, 2006: 607-722.
[13] PEDRO J T. Bounded solutions in singular equations of repulsive type[J]. Nonlinear Analysis, 1998, 32(1):117-125.
[14] PEDRO J T, ZHANG Meirong. Twist periodic solutions of repulsive singular equations[J]. Nonlinear Analysis, 2004, 56(4):591-599.
[15] ZHANG Meirong. A relationship between the periodic and the Dirichlet BVPs of singular differential equations[J]. Proceedings of the Royal Society of Edinburgh(Section A), 1998, 128(5):1099-1114.
[16] RACHUNKOVÁ I, TVRDY M, VRKOC I. Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems[J]. Journal of Differential Equations, 2001, 176(2):445-469.
[17] PEDRO J T. Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190(2):643-662.
[18] FRANCO D, WEBB J K L. Collisionless orbits of singular and nonsingular dynamical systems[J]. Discrete and Continuous Dynamical Systems, 2006, 15(3):747-757.
[19] PEDRO J T. Weak singularities may help periodic solutions to exist[J]. Journal of Differential Equations, 2007, 232(1):277-284.
[20] CHU Jifeng, LI Ming. Positive periodic solutions of Hills equations with singular nonlinear perturbations[J]. Nonlinear Analysis, 2008, 69(1):276-286.
[21] LI Xiong, ZHANG Ziheng. Periodic solutions for second-order differential equations with a singular nonlinearity[J]. Nonlinear Analysis, 2008, 69(11):3866-3876.
[22] MA Ruyun, CHEN Ruipeng, HE Zhiqian. Positive periodic solutions of second-order differential equations with weak singularities[J]. Applied Mathematics and Computation, 2014, 232(1):97-103.
[23] HAKL R, PEDRO J T. Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign[J]. Applied Mathematics and Computation, 2011, 217(19):7599-7611.
[24] CHU Jifeng, FAN Ning, PEDRO J T. Periodic solutions for second order singular damped differential equations[J]. Journal of Mathematical Analysis and Applications, 2012, 388(2):665-675.
[25] CABADA A, CID J. On the sign of the Greens function associated to Hills equation with an indefinite potential[J]. Applied Mathematics and Computation, 2008, 205(1):303-308.
[26] DEIMLING K. Nonlinear functional analysis[M]. Berlin: Springer-Verlag, 1985.
[1] . Uniqueness of positive solutions of singular p-biharmonic equations with Hardy terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 75-80.
[2] MA Man-tang. Existence of positive solutions for a class of periodic boundary value problems of nonlinear second-order systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 88-95.
[3] ZHANG Huan, LI Yong-xiang. Positive periodic solutions of higher-order ordinary differential equations with delayed derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 29-36.
[4] WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56.
[5] . Existence of positive solutions for a class of nonlinear second-order Dirichlet problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 64-69.
[6] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[7] YE Fu-mei. Existence results of a resonance problem with derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 25-31.
[8] FENG Xiao-zhou, XU Min, WANG Guo-hui. Coexistence solution of a predator-prey system with B-D functional response and toxin effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 53-61.
[9] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71.
[10] ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72.
[11] KONG Yi-ting, WANG Tong-ke. The steepest descent method for Fourier integrals involving algebraic and logarithmic singular factors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 50-55.
[12] . Periodic solutions for second order singular damped differential equations with a weak singularity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 84-88.
[13] WANG Shuang-ming. Dynamical analysis of a class of periodic epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 81-87.
[14] CHEN Bin. Third-order periodic boundary value problems with sign-changing Greens function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 79-83.
[15] SU Yan. Existence of solutions for second-order discrete Neumann problems at resonance [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[2] YI Chao-qun, LI Jian-ping, ZHU Cheng-wen. A kind of feature selection based on classification accuracy of SVM[J]. J4, 2010, 45(7): 119 -121 .
[3] SUN Liang-ji,JI Guo-xing . Jordan(α,β)-derivations and generalized Jordan(α,β)-derivations on upper triangular matrix algebras[J]. J4, 2007, 42(10): 100 -105 .
[4] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .
[5] HU Ming-Di, SHE Yan-Hong, WANG Min. Topological properties of  three-valued   logic  metric space[J]. J4, 2010, 45(6): 86 -90 .
[6] LIU Zhan-jie1, MA Ru-ning1, ZOU Guo-ping1, ZHONG Bao-jiang2, DING Jun-di 3. An algorithm for color image segmentation based on region growth[J]. J4, 2010, 45(7): 76 -80 .
[7] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[8] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .
[9] WU Yun1,2, HAN Ya-die1. Existence of nontrivial solutions of nonlinear elliptic equation with critical potential[J]. J4, 2013, 48(4): 91 -94 .
[10] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .