### Local existence and uniqueness of positive solutions for a Sturm-Liouville boundary value problem of second order differential equations

ZHU Xiao-lin, ZHAI Cheng-bo*

1. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
• Published:2019-10-12

Abstract: The positive solution of a class of second-order nonlinear differential equation with Sturm-Liouville boundary value conditions is studied. By using fixed point theorems in ordered Banach spaces, the local existence and uniqueness of positive solutions is given. Finally, two applied examples are given.

CLC Number:

• O177.91
 [1] GE Weigao, REN Jingli. New existence theorems of positive solutions for Sturm-Liouville boundary value problems[J]. Applied Mathematics and Computation, 2006, 148(3):631-644.[2] ZHAI Chengbo, GUO Chunmei. Positive solutions for third-order Sturm-Liouville boundary-value problems with p-Laplacian[J]. Electronic Journal of Differential Equations, 2009(154):2059-2066.[3] DU Zengji, YIN Jian. A second order differential equation with generalized Sturm-Liouville integral boundary conditions at resonance[J]. Filomat, 2014(28):1437-1444.[4] MA Ruyun. Nonlinear discrete Sturm-Liouville problems at resonance[J]. Nonlinear Analysis: Theory, Methods and Applications, 2007(67):3050-3057.[5] MARONCELLI D, RODRIGUEZ J. Existence theory for nonlinear Sturm-Liouville problems with unbounded nonlinearities[J]. Differential Equations and Applications, 2014(6):455-466.[6] RODRIGUEZ J, SUAREZ A. On nonlinear perturbations of Sturm-Liouville problems in discrete and continuous settings[J]. Differential Equations and Applications, 2016,(8):319-334.[7] MARONCELLI D, RODRIGUEZ J. Existence theory for nonlinear Sturm-Liouville problems with non-local boundary conditions[J]. Differential Equations and Applications, 2018, 10(2):147-161.[8] 苏华, 刘立山. 二阶Sturm-Liouville特征值问题解的存在与非存在性[J]. 数学学报(中文版), 2014, 57(6):1241-1248. SU Hua, LIU Lishan. The existence and nonexistence of positive solutions for second-order Sturm-Liouville eigenvalue problems[J]. Act Mathematica Sinica(Chinese Series), 2014, 57(6):1241-1248.[9] 陈东晓,陈应生. 二阶微分方程积分边值问题正解的存在性[J]. 华侨大学学报(自然科学版), 2013, 34(5):586-590. CHEN Dongxiao, CHEN Yingsheng. Existence positive solutions of boundary value problems for second order differential equations with integral conditions[J]. Journal of Huaqiao University(Natural Science), 2013, 34(5):586-590.[10] 郭肖肖, 赵增勤. 非良序上下解条件下带脉冲项Sturm-Liouville边值问题的正解[J]. 系统科学与数学, 2013, 33(10):1248-1255. GUO Xiaoxiao, ZHAO Zengqin. Positive solutions of Sturm-Liouville BVP for impulsive differential equations with a non-well-ordered upper and lower solution condition[J]. Journal of Systems Science and Mathematical Sciences, 2013, 33(10):1248-1255.[11] 郭大钧. 非线性分析中的半序方法[M]. 济南: 山东科学技术出版社,2000. GUO Dajun. Partial ordered method in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2000.[12] DU Yihong. Fixed points of increasing operators in ordered Banach spaces and applications[J]. Applicable Analysis, 1990, 38:1-20.
 [1] . Uniqueness of positive solutions of singular p-biharmonic equations with Hardy terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 75-80. [2] MA Man-tang. Existence of positive solutions for a class of periodic boundary value problems of nonlinear second-order systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 88-95. [3] WEI Jin-ying, WANG Su-yun, LI Yong-jun. Existence of positive solutions to a semipositone second-order boundary value problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 7-12. [4] LUO Qiang, HAN Xiao-ling, YANG Zhong-gui. Existence of positive solutions for boundary value problems of third-order delay differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 33-39. [5] SONG Jun-qiu, JIA Mei, LIU Xi-ping, LI Lin. Existence of positive solutions for fractional nonhomogeneous boundary value problem with p-Laplacian [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 57-66. [6] . Existence of positive solutions for a class of nonlinear second-order Dirichlet problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 64-69. [7] YAN Dong-liang. Positive solutions of a second order periodic problems with derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 69-75. [8] LI Tao-tao. Existence of radial positive solutions of second-order semi-positone elliptic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 48-55. [9] FENG Hai-xing, ZHAI Cheng-bo. Multiple positive solutions of a system of high order nonlinear fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 48-57. [10] GUO Li-jun. Existence of positive solutions for a third-order three-point boundary value problem of nonlinear differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 47-53. [11] YANG Wen-bin, LI Yan-ling. Dynamics research in a predator-prey system with a nonlinear growth rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 80-87. [12] SUN Yan-mei. Existence of positive solutions for singular fractional #br# differential equations boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 71-75. [13] ZHANG Lu, MA Ru-yun. Bifurcation structure of asymptotically linear second-order #br# semipositone discrete boundary value problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 79-83. [14] QIN Xiao-na, JIA Mei*, LIU Shuai. Existence of positive solutions for fractional differential equations boundary value problems with Caputo derivative [J]. J4, 2013, 48(10): 62-67. [15] FAN Jin-jun, ZHANG Xue-ling, LIU Yan-sheng. Existence of positive solutions of the m-point boundary value problem with p-Laplace operator on time scales [J]. J4, 2012, 47(6): 16-19.
Viewed
Full text

Abstract

Cited

Shared
Discussed