-
Higher ξ-Lie derivable maps on triangular algebras at reciprocal elements
- ZHANG Xia, ZHANG Jian-hua
-
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE). 2019, 54(10):
79-84.
doi:10.6040/j.issn.1671-9352.0.2019.192
-
Abstract
(
1086 )
PDF (339KB)
(
355
)
Save
-
References |
Related Articles |
Metrics
Let U=Tri(A,M,B )be a triangular algebra with identity 1, 1A,1B be the unit of A and B, respectively. For any A∈A, B∈B, there are integers k1,k2 respectively, making k11A-A, k21B-B invertible in triangular algebras. {φn}n∈N:U→U be a sequence of linear maps. In this paper, we prove that if {φn}n∈N satisfies φn([U,V]ξ)=∑i+j=nφi(U)φj(V)-ξφi(V)φj(U)(ξ≠0,1), for any U,V∈U with UV=VU=1, then {φn}n∈N is a higher derivation, where φ0=id0 is the identity map, [U,V]ξ=UV-ξVU.