JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (10): 1-6.doi: 10.6040/j.issn.1671-9352.0.2018.131
ZHANG Shen-gui
CLC Number:
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5(1):105-116. [2] RUZICKA M. Electrorheologial fluids: modeling and mathematial theory[M]. Berlin: Springer-Verlag, 2000. [3] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66(4):1383-1406. [4] FAN Xianling, FAN Xing. A Knobloch-type result for p(t)-Laplacian systems[J]. J Math Anal Appl, 2003, 282(2):453-464. [5] WANG Xianjun, YUAN Ruan. Existence of periodic solutions for p(t)-Laplacian systems[J]. Nonlinear Analysis, 2009, 70(2):866-880. [6] ZHANG Liang, TANG Xianhua, CHEN Jing. Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian[J]. Boundary Value Problems, 2011, 33(1):1-15. [7] CHEN Peng, TANG Xianhua, AGARWAL R. Infinitely many homoclinic solutions for nonautonomous p(t)-Laplacian Hamiltonian systems[J]. Computer and Mathematical with Applications, 2012, 63(4):751-763. [8] PASCA D, TANG Chunlei. Periodic solutions of non-autonomous second order systems with(q(t), p(t))-Laplacian[J]. Mathematica Slovaca, 2014, 64(1):913-930. [9] ZHANG Ziheng, YUAN Ruan. Existence of two almost homoclinic solutions for p(t)-Laplacian Hamiltonian systems with a small perturbation[J]. Journal of Applied Mathematics and Computing, 2016, 52(1):173-189. [10] AN Yukun, RU Yuanfang, WANG Fanglei. Existence of nonconstant periodic solutions for a class of second-order systems with p(t)-Laplacian[J]. Boundary Value Problems, 2017, 170(1):1-15. [11] AUTUORI G, PUCCI P, SALVATORI M C. Asymptotic stability for anisotropic Kirchhoff systems[J]. J Math Anal Appl, 2009, 352(1):149-165. [12] BONANNO G. Relations between the mountain pass theorem and local minima[J]. Advance Nonlinear Analysis, 2012, 1(3):205-220. |
[1] | ZHANG Shen-gui. Applications of variational method to impulsive differential systems with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 22-28. |
[2] | WU Yi-jia, CHENG Rong. Infinitely many nontrival solutions for a class of Schrödinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 84-88. |
[3] | ZHANG Shen-gui. Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 32-37. |
[4] | . Periodic solutions for second order singular damped differential equations with a weak singularity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 84-88. |
[5] | WANG Shuang-ming. Dynamical analysis of a class of periodic epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 81-87. |
[6] | JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103. |
[7] | . Existence of periodic solutions for a class of Hamiltonian systems with p-Laplace [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 42-46. |
[8] | ZHANG Shen-gui. Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 48-53. |
[9] | WU Cheng-ming. Existence of positive periodic solutions for second order singular coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 81-88. |
[10] | XU Man. Existence of positive periodic solutions of impulsive functional differential equations with two parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 69-74. |
[11] | SUN Guo-wei, MAI A-li. Multiple homoclinic solutions for second order nonlinear difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 51-54. |
[12] | ZHANG Shen-gui. Multiplicity of solutions for local superlinear p-kirchhoff-type equation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 61-68. |
[13] | ZHANG Guo-wei 1, CHEN Ang2. Infinitely connectivity of the wandering domain of#br# Baker’s original example [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 70-73. |
[14] | GUO Ying. Pseudo almost solutions of difference equations [J]. J4, 2012, 47(2): 42-46. |
[15] | ZHANG Shen-gui. Infinitely many solutions for a class of superlinear p(x)-biharmonic equation [J]. J4, 2012, 47(10): 116-120. |
|