JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 100-106.doi: 10.6040/j.issn.1671-9352.0.2023.383
WANG Ran, YU Weiyan*
CLC Number:
[1] STONE M H. Linear transformations in Hilbert space and their applications to analysis[J]. Journal of the American Mathematical Society, 1933, 15:84-84. [2] TOEPLITZ O. Dasalgebraische analogon zu einem satze von fejer[J]. Mathematische Zeitschrift, 1918, 2(1/2):187-197. [3] GUSTAFSON K E, RAO D K. Numerical range[M]. New York: Springer, 1997:208-246. [4] PENROSE R. A generalized inverse for matrices[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51(3):406-413. [5] HALMOS P R. Two subspaces[J]. Transactions of the American Mathematical Society, 1969, 144:381-389. [6] KLAJA H. The numerical range and the spectrum of a product of two orthogonal projections[J]. Journal of Mathematical Analysis and Applications, 2014, 411(1):177-195. [7] WANG Yueqing, ZUO Ning, DU Hongke. Characterizations of the support function of the numerical range of the product of positive contractions[J]. Linear and Multilinear Algebra, 2016, 64(10):2068-2080. [8] 张晨,余维燕. 算子P+QP的数值域[J]. 山东大学学报(理学版),2023,58(9):92-98. ZHANG Chen, YU Weiyan. The numerical range of operator P+QP[J]. Journal of Shandong University(Natural Science), 2023, 58(9):92-98. [9] CHENG Shizen, TIAN Yongge. Moore-Penrose inverses of products and differences of orthogonal projectors[J]. Acta Scientiarum Mathematicarum, 2003, 69(3):533-542. [10] DU Hongke, DENG Chunyuan. Moore-Penrose inverses of products and differences of orthogonal projectors[J]. Acta Analysis Functionalis Application, 2006, 8(2):104-109. [11] CHIEN Maoting. Numerical Range of Moore-Penrose inverse matrices[J]. Mathematics, 2020, 8(5):1-8. [12] DU Hongke, LI Chikwong, WANG Kuozhong. Numerical ranges of the product of operators[J]. Operators and Matrices, 2017, 11(1):171-180. [13] LENARD A. The numerical range of a pair of projections[J]. Journal of Functional Analysis, 1972, 10(4):410-423. [14] GERYBA T, SPITKOVSKY I M. On some 4-by-4 matrices with bi-elliptical numerical ranges[J]. Linear and Multilinear Algebra, 2020, 69(5):855-870. [15] GERYBA T, SPITKOVSKY I M. On the numerical range of some block matrices with scalar diagonal blocks[J]. Linear and Multilinear Algebra, 2020, 69(5):772-785. [16] LI Chikwong, POON Yiutung, WANG Yashu. Joint numerical ranges and communtativity of matrices[J]. Journal of Mathematical Analysis and Applications, 2020, 491(1):144-156. [17] BOTTCHER A, SPITKOVSKY I M. A gentle guide to the basics of two projections theory[J]. Linear Algebra and its Applications, 2010, 432(6):1412-1459. [18] 邓春源,杜鸿科. 两子空间的公共补与Groβ问题[J]. 数学学报,2006,49(5):1099-1112. DENG Chunyuan, DU Hongke. Common complements of two subspaces and an answer to Groβs question[J]. Acta Mathematica Sinica, Chinese series, 2006, 49(5):1099-1112. [19] ROCKAFELLAR R T. Convex analysis[M]. Princeton: Princeton University Press, 1970:79-110. [20] RIESZ F, NAGY S B. Functional analysis[M]. Massachusetts: Courier Corporation, 1990. |
[1] | Chen ZHANG,Weiyan YU. The numerical range of the operator P+QP [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 92-98. |
[2] | SHI Zhang-lei, LI Wei-guo. A† graded hard thresholding pursuit algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 58-64. |
[3] | XU Jun-lian1,2. Solutions to the operator equation AXB*-BX*A*=C [J]. J4, 2012, 47(4): 47-52. |
[4] | DUAN Chen-xia1, SUN Gang2, WANG Gui-jun1*. Universal approximation of three-layer regular fuzzy neural networks for a class of functions [J]. J4, 2012, 47(3): 81-86. |
[5] | WU Shu-xia, LIU Xiao-ji*. Reverse order laws for generalized inverse in C*-algebras [J]. J4, 2011, 46(4): 82-85. |
[6] | YUAN Wan-gui, KONG Xiang-zhi. Weighted Moore-Penrose inverses on rings [J]. J4, 2011, 46(12): 55-59. |
[7] | TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C [J]. J4, 2010, 45(6): 74-80. |
[8] | WANG Hong-xing1,2, LIU Xiao-ji3. The weighted Moore-Penrose inverse over integral domains [J]. J4, 2010, 45(10): 9-14. |
[9] | SONG Cai-Qin, DIAO Jian-Li, WANG Xiao-Dong. Reverse order law for the weighted Moore-Penrose inverse of a triple left matrix semitensor product [J]. J4, 2009, 44(10): 80-86. |
|