JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 100-106.doi: 10.6040/j.issn.1671-9352.0.2023.383

Previous Articles    

Numerical range of Moore-Penrose inverses of a combination of two orthogonal projections

WANG Ran, YU Weiyan*   

  1. College of Mathematics and Statistics, Hainan Normal University, Haikou 571158, Hainan, China
  • Published:2025-05-19

Abstract: Let H be a complex separable Hilbert space, and P and Q be two orthogonal projection operators on H. This article mainly studies the numerical range of the Moore-Penrose inverse operator(P+QP) of the combination of P and Q. By using the operator block technique, the geometric characterization of the numerical range of the operator(P+QP) is given. That is, the closure of its numerical range is a closed convex hull of some explicit ellipses parameterized by points in the spectrum of operator PQ.

Key words: numerical range, orthogonal projections, Moore-Penrose inverse, support function

CLC Number: 

  • O177.1
[1] STONE M H. Linear transformations in Hilbert space and their applications to analysis[J]. Journal of the American Mathematical Society, 1933, 15:84-84.
[2] TOEPLITZ O. Dasalgebraische analogon zu einem satze von fejer[J]. Mathematische Zeitschrift, 1918, 2(1/2):187-197.
[3] GUSTAFSON K E, RAO D K. Numerical range[M]. New York: Springer, 1997:208-246.
[4] PENROSE R. A generalized inverse for matrices[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51(3):406-413.
[5] HALMOS P R. Two subspaces[J]. Transactions of the American Mathematical Society, 1969, 144:381-389.
[6] KLAJA H. The numerical range and the spectrum of a product of two orthogonal projections[J]. Journal of Mathematical Analysis and Applications, 2014, 411(1):177-195.
[7] WANG Yueqing, ZUO Ning, DU Hongke. Characterizations of the support function of the numerical range of the product of positive contractions[J]. Linear and Multilinear Algebra, 2016, 64(10):2068-2080.
[8] 张晨,余维燕. 算子P+QP的数值域[J]. 山东大学学报(理学版),2023,58(9):92-98. ZHANG Chen, YU Weiyan. The numerical range of operator P+QP[J]. Journal of Shandong University(Natural Science), 2023, 58(9):92-98.
[9] CHENG Shizen, TIAN Yongge. Moore-Penrose inverses of products and differences of orthogonal projectors[J]. Acta Scientiarum Mathematicarum, 2003, 69(3):533-542.
[10] DU Hongke, DENG Chunyuan. Moore-Penrose inverses of products and differences of orthogonal projectors[J]. Acta Analysis Functionalis Application, 2006, 8(2):104-109.
[11] CHIEN Maoting. Numerical Range of Moore-Penrose inverse matrices[J]. Mathematics, 2020, 8(5):1-8.
[12] DU Hongke, LI Chikwong, WANG Kuozhong. Numerical ranges of the product of operators[J]. Operators and Matrices, 2017, 11(1):171-180.
[13] LENARD A. The numerical range of a pair of projections[J]. Journal of Functional Analysis, 1972, 10(4):410-423.
[14] GERYBA T, SPITKOVSKY I M. On some 4-by-4 matrices with bi-elliptical numerical ranges[J]. Linear and Multilinear Algebra, 2020, 69(5):855-870.
[15] GERYBA T, SPITKOVSKY I M. On the numerical range of some block matrices with scalar diagonal blocks[J]. Linear and Multilinear Algebra, 2020, 69(5):772-785.
[16] LI Chikwong, POON Yiutung, WANG Yashu. Joint numerical ranges and communtativity of matrices[J]. Journal of Mathematical Analysis and Applications, 2020, 491(1):144-156.
[17] BOTTCHER A, SPITKOVSKY I M. A gentle guide to the basics of two projections theory[J]. Linear Algebra and its Applications, 2010, 432(6):1412-1459.
[18] 邓春源,杜鸿科. 两子空间的公共补与Groβ问题[J]. 数学学报,2006,49(5):1099-1112. DENG Chunyuan, DU Hongke. Common complements of two subspaces and an answer to Groβs question[J]. Acta Mathematica Sinica, Chinese series, 2006, 49(5):1099-1112.
[19] ROCKAFELLAR R T. Convex analysis[M]. Princeton: Princeton University Press, 1970:79-110.
[20] RIESZ F, NAGY S B. Functional analysis[M]. Massachusetts: Courier Corporation, 1990.
[1] Chen ZHANG,Weiyan YU. The numerical range of the operator P+QP [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 92-98.
[2] SHI Zhang-lei, LI Wei-guo. A graded hard thresholding pursuit algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 58-64.
[3] XU Jun-lian1,2. Solutions to the operator equation AXB*-BX*A*=C [J]. J4, 2012, 47(4): 47-52.
[4] DUAN Chen-xia1, SUN Gang2, WANG Gui-jun1*. Universal approximation of three-layer regular fuzzy neural networks for a class of functions [J]. J4, 2012, 47(3): 81-86.
[5] WU Shu-xia, LIU Xiao-ji*. Reverse order laws for generalized inverse in C*-algebras [J]. J4, 2011, 46(4): 82-85.
[6] YUAN Wan-gui, KONG Xiang-zhi. Weighted Moore-Penrose inverses on rings [J]. J4, 2011, 46(12): 55-59.
[7] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C [J]. J4, 2010, 45(6): 74-80.
[8] WANG Hong-xing1,2, LIU Xiao-ji3. The weighted Moore-Penrose inverse over integral domains [J]. J4, 2010, 45(10): 9-14.
[9] SONG Cai-Qin, DIAO Jian-Li, WANG Xiao-Dong. Reverse order law for the weighted Moore-Penrose inverse of a triple left matrix semitensor product [J]. J4, 2009, 44(10): 80-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!