JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 116-126.doi: 10.6040/j.issn.1671-9352.0.2023.474

Previous Articles    

Bayesian parametric estimations for spatial error models based on slice-Gibbs sampling

LI Aogui1, ZHAO Yuanying2,3*   

  1. 1. College of Mathematics and Statistic, Guizhou University, Guiyang 550025, Guizhou, China;
    2. College of Science, Guiyang University, Guiyang 550005, Guizhou, China;
    3. Department of Railway Engineering, Guizhou Communications Polytechnic University, Guiyang 551400, Guizhou, China
  • Published:2025-03-10

Abstract: A Markov chain Monte Carlo(MCMC)technique called the slice-Gibbs sampling algorithm is proposed to calculate joints Bayesian estimations of unknown parameters for spatial error models, the proposed algorithm and Bayesian approach are illustrated by two simulation studies, the model and methodology are demonstrated by a real example.

Key words: Bayesian estimation, Gibbs sampling, slice sampling, spatial error model

CLC Number: 

  • O212.8
[1] LESAGE J, PACE K R. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2010.
[2] ANSELIN L. Spatial econometrics: methods and models[M]. New York: Springer, 1988.
[3] TIAN Ruiqin, XU Dengke, DU Jiang, et al. Bayesian estimation for partially linear varying coefficient spatial autoregressive models[J]. Statistics and Its Interface, 2022, 15(1):105-113.
[4] TANG Yangbing, DU Jiang, ZHANG Zhongzhan. A parametric specification test for linear spatial autoregressive models[J]. Spatial Statistics, 2023, 57(1):100767.
[5] JU Yuanyuan, YANG Han, HU Mingxing, et al. Bayesian influence analysis of the skew-normal spatial autoregression models[J]. Mathematics, 2022, 10(8):1306.
[6] GUO Penghui, LIU Lihu, QIAN Zhengming. Robust test for spatial error model: considering changes of spatial layouts and distribution misspecification[J]. Communications in Statistics: Simulation and Computation, 2015, 44(2):402-416.
[7] CHIARA G, GIANFRANCO P, GIUSEPPE A, et al. Recursive estimation of the spatial error model[J]. Geographical Analysis, 2022, 55(1):90-106.
[8] 李坤明,陈建宝. 非参数空间误差模型的截面最小二乘估计[J]. 数理统计与管理,2020,39(5):824-837. LI Kunming, CHEN Jianbao. Profile least square estimation of nonparametric spatial error model[J]. Journal of Applied Statistics and Management, 2020, 39(5):824-837.
[9] VURAL Y, YELIZ K M. Robust estimation approach for spatial error model[J]. Journal of Statistical Computation and Simulation, 2020, 90(9):1618-1638.
[10] DAI Xiaowen, LI Erqian, TIAN Maozai. Quantile regression for varying coefficient spatial error models[J]. Communications in Statistics: Theory and Methods, 2021, 50(10):2382-2397.
[11] 陈小驽. 基于切片抽样MCMC方法的比较分析[D]. 成都:四川大学,2007. CHEN Xiaonu. Comparative analysis based on slice sampling with MCMC[D]. Chengdu: Sichuan University, 2007.
[12] SENGUPTA B, FRISTON K J, PENNY W D. Gradient-free MCMC methods for dynamic causal modelling[J]. NeuroImage, 2015, 112:375-381.
[13] ZHANG Jiwei, ZHANG Zhaoyuan, TAO Jian. A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data[J]. Computational Statistics, 2021, 36(4):2643-2669.
[14] LU Jing, ZHANG Jiwei, TAO Jian. Slice-Gibbs sampling algorithm for estimating the parameters of a multilevel item response model[J]. Journal of Mathematical Psychology, 2018, 82:12-25.
[15] LU Jing, ZHANG Jiwei, ZHANG Zhaoyuan, et al. A novel and highly effective Bayesian sampling algorithm based on the auxiliary variables to estimate the testlet effect models[J]. Frontiers in Psychology, 2021, 12:509575.
[16] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21(6):1087-1092.
[17] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1):97-109.
[18] NEAL R M. Slice sampling[J]. The Annals of Statistics, 2003, 31(3):705-741.
[19] LIU J S. Monte Carlo strategies in scientific computing[M]. Berlin: Springer, 2001
[20] GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6):721-741.
[21] GEYER C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992, 7(4):473-483.
[22] CHEN Jiaqing, WANG Renfu, HUANG Yangxin. Semiparametric spatial autoregressive model: a two step Bayesian approach[J]. Annals of Public Health and Research, 2015, 2(1):1012.
[23] GELMAN A, CARLIN B J, STERN S H, et al. Bayesian data analysis[M]. 3rd ed. Oxford: Taylor & Francis, 2013.
[24] POLSON N G, SCOTT J G, WINDLE J. Bayesian inference for logistic models using Pólya-Gamma latent variables[J]. Journal of the American Statistical Association, 2013, 108(504):1339-1349.
[25] ZHAO Yuanying, XU Dengke, DUAN Xingde, et al. A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data[J]. Journal of Statistical Computation and Simulation, 2022, 92(7):1438-1456.
[26] 唐年胜,韦博成. 非线性再生散度模型[M]. 北京:科学出版社,2007. TIANG Niansheng, WEI Bocheng. Nonlinear reproductive dispersion models[M]. Beijing: Science Press, 2007.
[1] LONG Bing, JIANG Zaifu. Statistical inference of step-stress partially accelerated life test model under Type-Ⅱ censoring [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(12): 122-129.
[2] HU Jiang-shan, SUI Yun-yun, FU Yun-peng. Bayesian inference of Poisson distribution based on left truncated and right censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 46-52.
[3] WU Ping-jie, ZHOU Bin, WU Quan-yuan. COT: acontinuous temporal modeling algorithm for community discovery [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 41-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIE Juan-ying1, 2, ZHANG Yan1, XIE Wei-xin2, 3, GAO Xin-bo2. A novel rough K-means clustering algorithm based on the weight of density[J]. J4, 2010, 45(7): 1 -6 .
[2] WU Zhi-jun,SHEN Dan-dan. Architecture and key technologies of network-enabled next generation global flight tracking based on information integration and sharing[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 1 -6 .
[3] QU Shouning, FU Aifang, LI Jing, LIU Jing. Forecasting stock market risks based on the flexible neural tree[J]. J4, 2009, 44(11): 44 -47 .
[4] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[5] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[6] HAN Ya-fei, YI Wen-hui, WANG Wen-bo, WANG Yan-ping, WANG Hua-tian*. Soil bacteria diversity in continuous cropping poplar plantation#br# by high throughput sequencing[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 1 -6 .
[7] YU Wenguang 1, YU Hongbin 2. [J]. J4, 2009, 44(4): 84 -87 .
[8] . Modeling in fedbatch fermentation and its parameter 
identification based on HPSO algorithm
[J]. J4, 2009, 44(7): 71 -78 .
[9] WANG Hong-mei,XIAO Min*,LI Zheng-yi,LI Yu-mei,QIAN Xin-min, . Screening and identification of βgalactosidaseproducing microorganism and enzymatic synthesis of galactooligosaccharides using its transgalactosylation[J]. J4, 2006, 41(1): 133 -139 .
[10] ZHANG Jia-li, MIAO Lian-ying, SONG Wen-yao. Edge colorings of 1-planar graphs for maximum degree eight #br# without adjacent 4-cycles[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 18 -23 .