JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 122-129.doi: 10.6040/j.issn.1671-9352.0.2023.064
Previous Articles Next Articles
LONG Bing, JIANG Zaifu
CLC Number:
[1] 师义民,师小琳. 竞争失效产品部分加速寿命试验的统计分析[J]. 西北工业大学学报,2017,35(1):109-115. SHI Yimin, SHI Xiaolin. Statistical analysis for partially accelerated life tests with competing causes of failure[J]. Journal of Northwestern Polytechnical University, 2017, 35(1):109-115. [2] 龙兵,张忠占.恒定应力部分加速寿命试验的统计分析[J]. 应用数学,2019,32(2):302-310. LONG Bing, ZHANG Zhongzhan. Statistical analysis for constant-stress partially accelerated life tests[J]. Mathematica Applicata, 2019, 32(2):302-310. [3] ISMAIL A A, ABDEL-GHALY A A, EL-KHODARY E H. Optimum constant-stress life test plans for Pareto distribution under Type-Ⅰ censoring[J]. Journal of Statistical Computation and Simulation, 2011, 81(12):1835-1845. [4] NASSAR M, ALAM F M A. Analysis of modified kies exponential distribution with constant stress partially accelerated life tests under Type-Ⅱ censoring[J]. Mathematics, 2022, 10(5):819. [5] DEY S, WANG L, NASSAR M. Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive Type-Ⅱ censoring[J]. Journal of Applied Statistics, 2022, 49(11):2891-2912. [6] ALMALKI S J, FARGHAL A W A, RASTOGI M K, et al. Partially constant-stress accelerated life tests model for parameters estimation of Kumaraswamy distribution under adaptive Type-Ⅱ progressive censoring[J]. Alexandria Engineering Journal, 2022, 61(7):5133-5143. [7] ISMAIL A A. Likelihood inference for a step-stress partially accelerated life test model with Type-Ⅰ progressively hybrid censored data from Weibull distribution[J]. Journal of Statistical Computation and Simulation, 2014, 84(11):2486-2494. [8] ISMAIL A A. Statistical inference for a step-stress partially-accelerated life test model with an adaptive Type-Ⅰ progressively hybrid censored data from Weibull distribution[J]. Statistical Papers, 2016, 57(2):271-301. [9] ISMAIL A A. Inference for a step-stress partially accelerated life test model with an adaptive Type-Ⅱ progressively hybrid censored data from Weibull distribution[J]. Journal of Computational and Applied Mathematics, 2014, 260:533-542. [10] ZHANG Chunfang, SHI Yimin, WU Min. Statistical inference for competing risks model in step-stress partially accelerated life tests with progressively Type-Ⅰ hybrid censored Weibull life data[J]. Journal of Computational and Applied Mathematics, 2016, 297:65-74. [11] ALJOHANI H M, ALFAR N M. Estimations with step-stress partially accelerated life tests for competing risks Burr XII lifetime model under Type-Ⅱ censored data[J]. Alexandria Engineering Journal, 2020, 59(3):1171-1180. [12] ALAM I, AHMED A. Inference on maintenance service policy under step-stress partially accelerated life tests using progressive censoring[J]. Journal of Statistical Computation and Simulation, 2022, 92(4):813-829. [13] KAMAL M, SIDDIQUI S A, RAHMAN A, et al. Parameter estimation in step stress partially accelerated life testing under different types of censored data[J]. Computational Intelligence and Neuroscience, 2022:3491732. [14] WANG Liang, SHI Yimin, YAN Weian. Inference for Gompertz distribution under records[J]. Journal of Systems Engineering and Electronics, 2016, 27(1):271-278. [15] 龙沁怡,徐丽平. 基于上记录值Lomax分布的统计推断[J]. 江西师范大学学报(自然科学版), 2023, 47(2):216-220. LONG Qinyi, XU Liping. Statistical inference for Lomax distribution based on upper record values[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2023, 47(2):216-220. [16] 邓严林. 双边定数截尾下Topp-Leone分布的Bayes估计与预测[J].江西师范大学学报(自然科学版), 2021,45(3):272-277. DENG Yanlin. The Bayesian estimation and prediction for the Topp-Leone distribution under Type-Ⅱ doubly censored sample[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2021, 45(3):272-277. [17] 龙兵,张忠占. 双定数混合截尾下两参数Pareto分布的统计分析[J]. 数学物理学报, 2022, 42A(1):269-281. LONG Bing, ZHANG Zhongzhan. Statistical analysis of two-parameter Pareto distribution under double Type-Ⅱ hybrid censoring scheme[J]. Acta Mathematica Scientia, 2022, 42A(1):269-281. [18] ASL M N, BELAGHI R A, BEVRANI H. Classical and Bayesian inferential approaches using Lomax model under progressively Type-Ⅰ hybrid censoring[J]. Journal of Computational and Applied Mathematics, 2018, 343:397-412. |
[1] | Shuying WANG,Yanan ZHANG,Yunfei CHENG,Lifang ZHOU. Model averaging study with a cured group right-censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 108-116. |
[2] | HU Jiang-shan, SUI Yun-yun, FU Yun-peng. Bayesian inference of Poisson distribution based on left truncated and right censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 46-52. |
[3] | SUI Yun-yun, HU Jiang-shan, MA Shu-cai, FU Yun-peng. Parameter estimation of linear exponential distribution based on truncated and censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 10-16. |
[4] | ZHAO Yu-huan, ZHANG Xiao-bin. Maximum likelihood estimation for linear stochastic evolution equations#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 54-60. |
[5] | ZHOU Shao-wei,ZHAO Ming-qing and ZHU Zhe-li . Multitypeinsurance poisson risk model when claims obey exponential distribution [J]. J4, 2007, 42(1): 28-30 . |
|