JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (9): 52-61.doi: 10.6040/j.issn.1671-9352.0.2024.024

Previous Articles    

A pelican optimization algorithm based on hybrid strategy

LIU Weiyan, QI Ji*, LIANG Hong, LIN Yuchuan   

  1. College of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
  • Published:2025-09-10

Abstract: In order to improve the optimization performance and stability of the pelican optimization algorithm, a hybrid strategy-based pelican optimization algorithm is proposed. In the generation mechanism of candidate solutions for the pelican algorithm, the preference weight strategy is employed to guide the candidate solutions towards exploring diversity. A random search strategy is used to update partial alternative solution positions, which helps these candidate solutions with poor objective function values escape local optima. A large-range adaptive search radius strategy has been applied to enhance the algorithm, increasing the probability for each candidate solution to discover better solutions. Combined with comparative algorithms, optimization experiments are conducted on 18 test functions. The optimization results are analyzed and Wilcoxon rank sum tests are performed to verify that this improved Pelican optimization algorithm has better optimization performance and stability.

Key words: pelican optimization algorithm, hybrid strategy, preference weight, function optimization

CLC Number: 

  • TP301
[1] ZHANG Xinming, WANG Doudou, CHEN Haiyan. Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation[J]. IEEE Access, 2019, 7:28810-28825.
[2] WANG Zhaoxia, PEN Haibo, YANG Ting, et al. Structure-priority image restoration through genetic algorithm optimization[J]. IEEE Access, 2020, 8:90698-90708.
[3] XIONG Xin, HU Xi, GUO Huan. A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption[J]. Energy, 2021, 234:121127.
[4] GUERRAICHE K, DEKHICI L, CHATELET E, et al. Multi-objective electrical power system design optimization using a modified bat algorithm[J]. Energies, 2021, 14:3956.
[5] 张金珂,张建刚. 基于改进粒子群优化算法的信号检测及故障诊断[J]. 山东大学学报(理学版),2023,58(5):63-75,83. ZHANG Jinke, ZHANG Jiangang. Signal detection and fault diagnosis based on improved particle swarm optimization algorithm[J]. Journal of Shandong University(Natural Science), 2023, 58(5):63-75, 83.
[6] 行鸿彦,韩杰,刘刚. 混沌变步长萤火虫优化的随机共振微弱信号检测[J]. 探测与控制学报,2019,41(1):64-70. XING Hongyan, HAN Jie, LIU Gang. Chaotic variable step glowworm swarm optimization stochastic resonance for weak signal detection[J]. Journal of Detection & Control, 2019, 41(1):64-70.
[7] CHALLAB J M, MARDUKHI F. Ant colony optimization-rain optimization algorithm based on hybrid deep learning for diagnosis of lung involvement in coronavirus patients[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2023, 47:887-902.
[8] RERE LMR, FANANY M I, ARYMURTHY A M. Simulated annealing algorithm for deep learning[J]. Procedia Computer Science, 2015, 72:137-144.
[9] 纪延峰. 改进的萤火虫算法及其在多约束环境下的排课问题研究[D]. 南昌:江西财经大学,2022:44-55. JI Yanfeng. Research on improved firefly algorithm and its course problem in multi-constraint environment[D]. Nanchang: Jiangxi University of Finance and Economics, 2022:44-55.
[10] 刘明. 智能算法在实验教学排课中的应用[J]. 实验技术与管理,2021,38(7):244-247. LIU Ming. Application of intelligent algorithm in experimental course arrangement[J]. Experimental Technology and Management, 2021, 38(7):244-247.
[11] 李安东,刘升. 混合策略改进鲸鱼优化算法[J]. 计算机应用研究,2022,39(5):1415-1421. LI Andong, LIU Sheng. Multi-strategy improved whale optimization algorithm[J]. Application Research of Computers, 2022, 39(5):1415-1421.
[12] 李建伟,于广滨. 改进麻雀搜索算法的轮毂减速器优化设计[J]. 哈尔滨理工大学学报,2022,27(5):56-63. LI Jianwei, YU Guangbin. Optimization design of hub reducer based on improved sparrow search algorithm[J]. Journal of Harbin University of Science and Technology, 2022, 27(5):56-63.
[13] 耿召里,李目,曹淑睿,等. 基于混合反向学习策略的鲸鱼优化算法[J]. 计算机工程与科学,2022,44(2):355-363. GENG Zhaoli, LI Mu, CAO Shurui, et al. A whale optimization algorithm based on hybrid reverse learning strategy[J]. Computer Engineering & Science, 2022, 44(2):355-363.
[14] 贾鹤鸣,陈丽珍,力尚龙,等. 透镜成像反向学习的精英池侏儒猫鼬优化算法[J]. 计算机工程与应用,2023,59(24):131-139. JIA Heming, CHEN Lizhen, LI Shanglong, et al. Optimization algorithm of elite pool dwarf mongoose based on lens imaging reverse learning[J]. Computer Engineering and Applications, 2023, 59(24):131-139.
[15] 秦宏伍,王立铮,傅渝,等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报(理学版),2024,59(3):51-60. QIN Hongwu, WANG Lizheng, FU Yu, et al. Grey wolf optimization algorithm based on multi-strategy combination and its application[J]. Journal of Shandong University(Natural Science), 2024, 59(3):51-60.
[16] 周鹏,董朝轶,陈晓艳,等. 基于Tent混沌和透镜成像学习策略的平衡优化器算法[J]. 控制与决策,2023,38(6):1569-1576. ZHOU Peng, DONG Chaoyi, CHEN Xiaoyan, et al. An equilibrium optimizer algorithm based on a tent chaos and lens imaging learning strategy[J]. Control and Decision, 2023, 38(6):1569-1576.
[17] 闫晓斌,方洋旺,彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京航空航天大学学报,2024,50(8):2636-2645. YAN Xiaobin, FANG Yangwang, PENG Weishi. Multi-objective Harris Hawk optimization algorithm based on adaptive gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8):2636-2645.
[18] 李大海,熊文清,王振东. 融合多策略的增强海鸥优化算法[J]. 计算机应用研究,2023,40(3):717-724. LI Dahai, XIONG Wenqing, WANG Zhendong. Enhancing seagull optimization algorithm by applying multiple strategies[J]. Application Research of Computers, 2023, 40(3):717-724.
[19] 付小朋,王勇,冯爱武. 采用混合搜索策略的阿奎拉优化算法[J]. 计算机应用研究,2022,39(10):3026-3032. FU Xiaopeng, WANG Yong, FENG Aiwu. Aquila optimization algorithm using hybrid search strategies[J]. Application Research of Computers, 2022, 39(10):3026-3032.
[20] 王筱薇,范勤勤,王维莉. 基于基因水平多样性的微种群教与学优化算法[J]. 计算机应用研究,2021,38(4):1097-1101. WANG Xiaowei, FAN Qinqin, WANG Weili. Micro-population teaching-learning-based optimization based on gene level diversity[J]. Application Research of Computers, 2021, 38(4):1097-1101.
[21] TROJOVSKY P, DEHGHANI M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications[J]. Sensors, 2022, 22:855.
[1] Jing TIAN,Jiahao GONG. Combinatorial properties and algebraic characterization of the strict mono-affix languages [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 91-97, 107.
[2] Li WANG,Jingwen LI,Wenzhu YANG,Huayan PEI. Adjacent vertex reducible total labeling of unicyclic graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 44-55.
[3] Hongwu QIN,Lizheng WANG,Yu FU,Muxuan SUI,Binggao HE. Grey wolf optimization algorithm based on multi-strategy combination and its application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 51-60.
[4] Ping LI,Jufang YANG,Yanping YANG. A new minimal determinization method of nondeterministic fuzzy finite automata [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 56-61.
[5] Xinglong LUO,Xingshi HE,Jie ZHOU,Xinshe YANG. Improved density peak clustering approach based on African vultures optimization algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 46-55,71.
[6] Haiyan LIU,Shouheng TUO. A new filled function method for global optimization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 80-87.
[7] Hai-hui WANG,Lu-yao ZHAO,Ping LI. ε-language approximation of nondeterministic fuzzy finite automata [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 37-43.
[8] PENG Jia-yin. Cyclic controlled quantum teleportation by using a ten-qubit entangled state as the channel [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 98-104.
[9] PENG Jia-yin. Bidirectional controlled teleportation with a genuine five-qubit non-maximally entangled state as quantum channel [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 105-113.
[10] LIU Li-zhao, YU Jia-ping, LIU Jian, LI Jun-yi, HAN Shao-bing, XU Hua-rong, LIN Huai-chuan, ZHU Shun-zhi. Secure storage addressing algorithm for large data based on quantum radiation field [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 65-74.
[11] SONG Xing-shen, YANG Yue-xiang, JIANG Yu. Efficient multiple sets intersection using SIMD instructions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 54-62.
[12] . Graph model based trustworthy resource scheduling algorithm in cloud environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(1): 63-74.
[13] ZHU Dan, XIE Xiao-yao, XU Yang, XIA Meng-ting. Evaluation method for network security level based on cloud model and Bayesian feedback [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(1): 53-62.
[14] SHI Pei-yun, GAO Xing-bao. Individual strength-based multi-objective immune algorithm with adaptive differential evolution [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 1-10.
[15] WANG Feng, MAN Yuan, WANG Xing-le. N-shortest paths retrieval algorithm based on artificial immunity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!