JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (4): 1-19.doi: 10.6040/j.issn.1671-9352.0.2024.289

   

Research progress on multi-scale network epidemic dynamic: coupling individual immunity with population transmission

WANG Yi, HAN Zhimin, LI Siqi   

  1. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, Hubei, China
  • Published:2025-04-08

Abstract: The multi-scale coupled epidemiological models(also known as the immuno-epidemiological models)has provided valuable biological insights into the study of infectious diseases by integrating pathogen dynamics within hosts and disease transmission processes between hosts. These models have addressed various research areas, including multi-strain infectious diseases, vector-borne transmission, environmental transmission, and optimal control. This paper reviewed the advancements in immuno-epidemiological models research over the past two decades. The studies not only focused on model analysis and the exploration of key biological factors but also examined the transition from homogeneous to heterogeneous mixing, as well as the extension from unidirectional to bidirectional coupling. Finally, based on the authors own work and understanding of the field, several important questions for future research were proposed.

Key words: immuno-epidemiological model, complex network, pathogen evolution

CLC Number: 

  • O175
[1] 马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京:科学出版社,2004. MA Zhien, ZHOU Yicang, WANG Wendi, et al. Mathematical modeling and research on infectious disease dynamics[M]. Beijing: Science Press, 2004.
[2] World Health Organation(WHO). Coronavirus disease(COVID-19)pandemic[EB/OL].(2019-11-12)[2025-02-18]. https://www.who.int/zh/emergencies/diseases/novel-coronavirus-2019.
[3] CHENG Xinxin, WANG Yi, HUANG Gang. Edge-based compartmental modeling for the spread of cholera on random networks: a case study in Somalia[J]. Mathematical Biosciences, 2023, 366:109092.
[4] JIN Xiulei, JIN Shuwan, GAO Daozhou. Mathematical analysis of the Ross-Macdonald model with quarantine[J]. Bulletin of Mathematical Biology, 2020, 82(4):47.
[5] LAN Yuqiong, LI Yanqiu, ZHENG Dongmei. Global dynamics of an age-dependent multiscale hepatitis C virus model[J]. Journal of Mathematical Biology, 2022, 85(3):21.
[6] KHAN M A, PARVEZ M, ISLAM S, et al. Mathematical analysis of typhoid model with saturated incidence rate[J]. Advanced Studies in Biology, 2015, 7(2):65-78.
[7] BUONOMO B, DONOFRIO A, LACITIGNOLA D. Modeling of pseudo-rational exemption to vaccination for SEIR diseases[J]. Journal of Mathematical Analysis and Applications, 2013, 404(2):385-398.
[8] SAHU G P, DHAR J. Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate[J]. Applied Mathematical Modelling, 2012, 36(3):908-923.
[9] LIU Qun, CHEN Qingmei, JIANG Daqing. The threshold of a stochastic delayed SIR epidemic model with temporary immunity[J]. Physica A: Statistical Mechanics and its Applications, 2016, 450:115-125.
[10] LIU Qun, JIANG Daqing, HAYAT T, et al. Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps[J]. Nonlinear Analysis: Hybrid Systems, 2018, 27:29-43.
[11] ZHAO H, FENG Z L. Staggered release policies for COVID-19 control: costs and benefits of relaxing restrictions by age and risk[J]. Mathematical Biosciences, 2020, 326:108405.
[12] MUSA S S, WANG X Y, ZHAO S, et al. The heterogeneous severity of COVID-19 in African countries: a modeling approach[J]. Bulletin of Mathematical Biology, 2022, 84(3):32.
[13] OLABODE D, CULP J, FISHER A, et al. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China[J]. Mathematical Biosciences and Engineering, 2021, 18(1):950-967.
[14] LIU Yang, YAN Limeng, WAN Lagen, et al. Viral dynamics in mild and severe cases of COVID-19[J]. The Lancet Infectious Diseases, 2020, 20(6):656-657.
[15] HE X, LAU E H Y, WU P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19[J]. Nature Medicine, 2020, 26(5):672-675.
[16] GILCHRIST M A, SASAKI A. Modeling host-parasite coevolution: a nested approach based on mechanistic models[J]. Journal of Theoretical Biology, 2002, 218(3):289-308.
[17] WEBB G F, DAGATA E M C, MAGAL P, et al. A model of antibiotic-resistant bacterial epidemics in hospitals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13343-13348.
[18] FRASER C, HOLLINGSWORTH T D, CHAPMAN R, et al. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44):17441-17446.
[19] SAENZ R A, BONHOEFFER S. Nested model reveals potential amplification of an HIV epidemic due to drug resistance[J]. Epidemics, 2013, 5(1):34-43.
[20] NUMFOR E, BHATTACHARYA S, LENHART S, et al. Optimal control in coupled within-host and between-host models[J]. Mathematical Modelling of Natural Phenomena, 2014, 9(4):171-203.
[21] MARTCHEVA M. An introduction to mathematical epidemiology[M]. New York: Springer, 2015.
[22] WANG Xueying, WANG Sunpeng, WANG Jin, et al. A multiscale model of COVID-19 dynamics[J]. Bulletin of Mathematical Biology, 2022, 84(9):99.
[23] SOUZA M O. Multiscale analysis for a vector-borne epidemic model[J]. Journal of Mathematical Biology, 2014, 68(5):1269-1293.
[24] BLOWER S, BERNOULLI D. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it[J]. Reviews in Medical Virology, 2004, 14(5):275.
[25] ENKO P D. On the course of epidemics of some infectious diseases[J]. International Journal of Epidemiology, 1989, 18(4):749-755.
[26] HAMER W H. Epidemic disease in England: the evidence of variability and of persistency of type[M]. [S.l.] : Bedford Press, 1906.
[27] BROWNLEE J. Statistical studies in immunity: the theory of an epidemic[J]. Proceedings of the Royal Society of Edinburgh, 1906, 26(1):484-521.
[28] ROSS R. The prevention of malaria[M]. [S.l.] : John Murray, 1911.
[29] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London. Series A, 1927, 115(772):700-721.
[30] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics, part II[J]. Proceedings of the Royal Society of London. Series A, 1932, 138:55-83.
[31] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics, part III[J]. Proceedings of the Royal Society of London. Series A, 1933, 141:94-112.
[32] TURKYILMAZOGLU M. Explicit formulae for the peak time of an epidemic from the SIR model[J]. Physica D: Nonlinear Phenomena, 2021, 422:132902.
[33] NG K Y, GUI M M. COVID-19: development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility[J]. Physica D: Nonlinear Phenomena, 2020, 411: 132599.
[34] CUI Jingan, WU Yucui, GUO Songbai. Effect of non-homogeneous mixing and asymptomatic individuals on final epidemic size and basic reproduction number in a meta-population model[J]. Bulletin of Mathematical Biology, 2022, 84(3):38.
[35] XIAO Y N, XIANG C C, CHEKE R A, et al. Coupling the macroscale to the microscale in a spatiotemporal context to examine effects of spatial diffusion on disease transmission[J]. Bulletin of Mathematical Biology, 2020, 82(5):58.
[36] FENG Z L, CASTILLO-CHAVEZ C, CAPURRO A F. A model for tuberculosis with exogenous reinfection[J]. Theoretical Population Biology, 2000, 57(3): 235-247.
[37] WANG Xia, WU Hulin, TANG Sanyi. Assessing age-specific vaccination strategies and post-vaccination reopening policies for COVID-19 control using SEIR modeling approach[J]. Bulletin of Mathematical Biology, 2022, 84(10):108.
[38] BUGALIA S, TRIPATHI J P, WANG H. Mutations make pandemics worse or better: modeling SARS-CoV-2 variants and imperfect vaccination[J]. Journal of Mathematical Biology, 2024, 88(4):45.
[39] CUEVAS-MARAVER J, KEVREKIDIS P G, CHEN Q Y, et al. Vaccination compartmental epidemiological models for the delta and omicron SARS-CoV-2 variants[J]. Mathematical Biosciences, 2024, 367:109109.
[40] PANT B, SAFDAR S, SANTILLANA M, et al. Mathematical assessment of the role of human behavior changes on SARS-CoV-2 transmission dynamics in the United States[J]. Bulletin of Mathematical Biology, 2024, 86(8):92.
[41] 唐三一,肖燕妮,彭志行,等.新型冠状病毒肺炎疫情预测建模、数据融合与防控策略分析[J].中华流行病学杂志,2020,41(4): 480-484. TANG Sanyi, XIAO Yanni, PENG Zhihang, et al. Prediction modeling with data fusion and prevention strategy analysis for the COVID-19 outbreak[J]. Chinese Journal of Epidemiology, 2020, 41(4):480-484.
[42] WANG Sunpeng, PAN Yang, WANG Quanyi, et al. Modeling the viral dynamics of SARS-CoV-2 infection[J]. Mathematical Biosciences, 2020, 328:108438.
[43] FENG Z L, VELASCO-HERNANDEZ J, TAPIA-SANTOS B, et al. A model for coupling within-host and between-host dynamics in an infectious disease[J]. Nonlinear Dynamics, 2012, 68(3):401-411.
[44] CAI L M, TUNCER N, MARTCHEVA M. How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria[J]. Mathematical Methods in the Applied Sciences, 2017, 40(18):6424-6450.
[45] COOMBS D, GILCHRIST M A, BALL C L. Evaluating the importance of within-and between-host selection pressures on the evolution of chronic pathogens[J]. Theoretical Population Biology, 2007, 72(4):576-591.
[46] DANG Y X, LI X Z, MARTCHEVA M. Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission[J]. Journal of Biological Dynamics, 2016, 10(1):416-456.
[47] MARTCHEVA M, LI X Z. Linking immunological and epidemiological dynamics of HIV: the case of super-infection[J]. Journal of Biological Dynamics, 2013, 7(1):161-182.
[48] CANDELA M G, SERRANO E, MARTINEZ-CARRASCO C, et al. Coinfection is an important factor in epidemiological studies: the first serosurvey of the aoudad(Ammotragus lervia)[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2009, 28(5):481-489.
[49] LI Xuezhi, GAO Shasha, FU Yike, et al. Modeling and research on an immuno-epidemiological coupled system with coinfection[J]. Bulletin of Mathematical Biology, 2021, 83(11):116.
[50] BALL C L, GILCHRIST M A, COOMBS D. Modeling within-host evolution of HIV: mutation, competition and strain replacement[J]. Bulletin of Mathematical Biology, 2007, 69(7):2361-2385.
[51] GILCHRIST M A, COOMBS D. Evolution of virulence: interdependence, constraints, and selection using nested models[J]. Theoretical Population Biology, 2006, 69(2):145-153.
[52] DUAN Xichao, SUN Xiaosa, YUAN Sanling. Dynamics of an immune-epidemiological model with virus evolution and super infection[J]. Journal of the Franklin Institute, 2022, 359(7):3210-3237.
[53] XUE Y Y, CHEN D P, SMITH S R, et al. Coupling the within-host process and between-host transmission of COVID-19 suggests vaccination and school closures are critical[J]. Bulletin of Mathematical Biology, 2022, 85(1):6.
[54] SHEN Mingwang, XIAO Yanni, RONG Libin. Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics[J]. Mathematical Biosciences, 2015, 263:37-50.
[55] SUN Xiaodan, XIAO Yanni, TANG Sanyi, et al. Early HAART initiation may not reduce actual reproduction number and prevalence of MSM infection: perspectives from coupled within-and between-host modelling studies of Chinese MSM populations[J]. PLoS One, 2016, 11(3):e0150513.
[56] SHEN Mingwang, XIAO Yanni, RONG Libin, et al. Conflict and accord of optimal treatment strategies for HIV infection within and between hosts[J]. Mathematical Biosciences, 2019, 309:107-117.
[57] SHEN Mingwang, XIAO Yanni, RONG Libin, et al. Global dynamics and cost-effectiveness analysis of HIV pre-exposure prophylaxis and structured treatment interruptions based on a multi-scale model[J]. Applied Mathematical Modelling, 2019, 75:162-200.
[58] ALMOCERA A E S, NGUYEN V K, HERNANDEZ-VARGAS E A. Multiscale model within-host and between-host for viral infectious diseases[J]. Journal of Mathematical Biology, 2018, 77(4):1035-1057.
[59] ALMOCERA A E S, HERNANDEZ-VARGAS E A. Coupling multiscale within-host dynamics and between-host transmission with recovery(SIR)dynamics[J]. Mathematical Biosciences, 2019, 309:34-41.
[60] AILI A, TENG Z D, ZHANG L. Dynamics in a disease transmission model coupled virus infection in host with incubation delay and environmental effects[J]. Journal of Applied Mathematics and Computing, 2022, 68(6):4331-4359.
[61] LI Jun, ZHAO Yulin, LI Shimin. Fast and slow dynamics of Malaria model with relapse[J]. Mathematical Biosciences, 2013, 246(1):94-104.
[62] SULLIVAN A, AGUSTO F, BEWICK S, et al. A mathematical model for within-host Toxoplasma gondii invasion dynamics[J]. Mathematical Biosciences and Engineering, 2012, 9(3):647-662.
[63] TURNER M, LENHART S, ROSENTHAL B, et al. Modeling effective transmission pathways and control of the worlds most successful parasite[J]. Theoretical Population Biology, 2013, 86:50-61.
[64] FENG Z L, VELASCO-HERNANDEZ J, TAPIA-SANTOS B. A mathematical model for coupling within-host and between-host dynamics in an environmentally-driven infectious disease[J]. Mathematical Biosciences, 2013, 241(1):49-55.
[65] CEN Xiuli, FENG Zhilan, ZHAO Yulin. Emerging disease dynamics in a model coupling within-host and between-host systems[J]. Journal of Theoretical Biology, 2014, 361:141-151.
[66] FENG Zhilan, CEN Xiuli, ZHAO Yulin, et al. Coupled within-host and between-host dynamics and evolution of virulence[J]. Mathematical Biosciences, 2015, 270:204-212.
[67] XUE Yuyi, XIAO Yanni. Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics[J]. Mathematical Biosciences and Engineering, 2020, 17(6):6720-6736.
[68] LIU Qiutong, XIAO Yanni. A coupled evolutionary model of the viral virulence in an SIS community[J]. Discrete and Continuous Dynamical Systems-B, 2023, 28(9):5012-5036.
[69] IWASA Y, POMIANKOWSKI A, NEE S. The evolution of costly mate preferences II: the "handicap" principle[J]. Evolution, 1991, 45(6):1431-1442.
[70] YANG Junyuan, JIA Peiqi, WANG Jin, et al. Rich dynamics of a bidirectionally linked immuno-epidemiological model for cholera[J]. Journal of Mathematical Biology, 2023, 87(5):71.
[71] ERDÖS P, RÉNYI A. On random graphs[J]. Publicationes Mathematicae Debrecen, 2022, 6(314):290-297.
[72] ERDÖS P, RÉNYI A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:17-61.
[73] ERDÖS P, RÉNYI A. On the strength of connectedness of a random graph[J]. Acta Mathematica Academiae Scientiarum Hungaricae, 1964, 12(1):261-267.
[74] 汪小帆,李翔,陈关荣. 复杂网络理论及其应用[M]. 北京:清华大学出版社,2006. WANG Xiaofan, LI Xiang, CHEN Guanrong. Theory and applications of complex networks[M]. Beijing: Tsinghua University Press, 2006.
[75] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[76] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11):888-893.
[77] PIQUEIRA J R C, NAVARRO B F, MONTEIRO L H A. Epidemiological models applied to viruses in computer networks[J]. Journal of Computer Science, 2005, 1(1):31-34.
[78] DE SILVA E, STUMPF M P H. Complex networks and simple models in biology[J]. Journal of the Royal Society Interface, 2005, 2(5):419-430.
[79] CATANZARO M, BUCHANAN M. Network opportunity[J]. Nature Physics, 2013, 9(3):121-123.
[80] NEWMAN M J, PARK J. Why social networks are different from other types of networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(3):036122.
[81] KUMPULA J M, ONNELA J P, SARAMÄKI J, et al. Emergence of communities in weighted networks[J]. Physical Review Letters, 2007, 99(22):228701.
[82] PASTOR-SATORRAS R, CASTELLANO C, VAN MIEGHEM P, et al. Epidemic processes in complex networks[J]. Reviews of Modern Physics, 2015, 87(3):925-979.
[83] WANG Yi, CAO Jinde, JIN Zhen, et al. Impact of media coverage on epidemic spreading in complex networks[J]. Physica A, 2013, 392(23):5824-5835.
[84] ZANETTE D H. Dynamics of rumor propagation on small-world networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4):041908.
[85] HOLME P, SARAMÄKI J. Temporal networks[J]. Physics Reports, 2012, 519(3):97-125.
[86] LIU Guirong, LIU Zhimei, JIN Zhen. Dynamics analysis of epidemic and information spreading in overlay networks[J]. Journal of Theoretical Biology, 2018, 444:28-37.
[87] 汪小帆,李翔,陈关荣.网络科学导论[M]. 北京:高等教育出版社,2012. WANG Xiaofan, LI Xiang, CHEN Guanrong. Introduction to network science[M]. Beijing: Higher Education Press, 2012.
[88] 刘茂省.网络传染病动力学新进展[M]. 北京:世界图书出版公司,2015. LIU Maoxing. Recent advances in the dynamics of network infectious diseases[M]. Beijing: World Publishing Corporation, 2015.
[89] WANG Yi, WEI Zhouchao, CAO Jinde. Epidemic dynamics of influenza-like diseases spreading in complex networks[J]. Nonlinear Dynamics, 2020, 101(3):1801-1820.
[90] KLOVDAHL A S. Social networks and the spread of infectious diseases: the AIDS example[J]. Social Science & Medicine, 1985, 21(11):1203-1216.
[91] MAY R M, ANDERSON R M. Commentary transmission dynamics of HIV infection[J]. Nature, 1987, 326(6109):137-142.
[92] NEWMAN M E J, WATTS D J. Scaling and percolation in the small-world network model[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 1999, 60(6):7332-7342.
[93] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14):3200-3203.
[94] MORENO Y, PASTOR-SATORRAS R, VESPIGNANI A. Epidemic outbreaks in complex heterogeneous networks[J]. The European Physical Journal B, 2002, 26(4):521-529.
[95] BOGUNÁ M, PASTOR-SATORRAS R. Epidemic spreading in correlated complex networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(4):047104.
[96] MIZUTAKA S, MORI K, HASEGAWA T. Synergistic epidemic spreading in correlated networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2022, 106(3):034305.
[97] LIU Z H, HU B. Epidemic spreading in community networks[J]. Europhysics Letters, 2005, 72(2):315-321.
[98] BONACCORSI S, OTTAVIANO S, DE PELLEGRINI F, et al. Epidemic outbreaks in two-scale community networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(1):012810.
[99] LIU Junli, ZHANG Tailei. Epidemic spreading of an SEIRS model in scale-free networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8):3375-3384.
[100] MENG Xueyu, CAI Zhiqiang, SI Shubin, et al. Analysis of epidemic vaccination strategies on heterogeneous networks: based on SEIRV model and evolutionary game[J]. Applied Mathematics and Computation, 2021, 403:126172.
[101] STELLA L, MARTÍNEZ A P, BAUSO D, et al. The role of asymptomatic infections in the COVID-19 epidemic via complex networks and stability analysis[J]. SIAM Journal on Control and Optimization, 2022, 60(2):S119-S144.
[102] KEELING M J, RAND D A, MORRIS A J. Correlation models for childhood epidemics[J]. Proceedings of the Royal Society of London. Series B, 1997, 264(1385):1149-1156.
[103] EAMES K T D, KEELING M J. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases[J]. Proceedings of the National Academy of Sciences, 2002, 99(20):13330-13335.
[104] EAMES K T D, KEELING M J. Monogamous networks and the spread of sexually transmitted diseases[J]. Mathematical Biosciences, 2004, 189(2):115-130.
[105] LINDQUIST J, MA J L, VAN DEN DRIESSCHE P, et al. Effective degree network disease models[J]. Journal of Mathematical Biology, 2011, 62(2):143-164.
[106] NEWMAN M J. Spread of epidemic disease on networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(1):016128.
[107] VOLZ E. SIR dynamics in random networks with heterogeneous connectivity[J]. Journal of Mathematical Biology, 2008, 56(3):293-310.
[108] MILLER J C. A note on a paper by Erik Volz: SIR dynamics in random networks[J]. Journal of Mathematical Biology, 2011, 62(3):349-358.
[109] WANG Yi, MA Junling, CAO Jinde, et al. Edge-based epidemic spreading in degree-correlated complex networks[J]. Journal of Theoretical Biology, 2018, 454:164-181.
[110] WANG Y, MA Junling, CAO Jinde. Basic reproduction number for the SIR epidemic in degree correlated networks[J]. Physica D: Nonlinear Phenomena, 2022, 433:133183.
[111] GROSS T, DLIMA C J D, BLASIUS B. Epidemic dynamics on an adaptive network[J]. Physical Review Letters, 2006, 96(20):208701.
[112] GROSS T, BLASIUS B. Adaptive coevolutionary networks: a review[J]. Journal of the Royal Society Interface, 2008, 5(20):259-271.
[113] SHAW L B, SCHWARTZ I B. Fluctuating epidemics on adaptive networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2008, 77(6):066101.
[114] SZABÓ-SOLTICZKY A, BERTHOUZE L, KISS I Z, et al. Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis[J]. Journal of Mathematical Biology, 2016, 72(5):1153-1176.
[115] PU Xiaojun, ZHU Jiaqi, WU Yunkun, et al. Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting[J]. CAAI Transactions on Intelligence Technology, 2023, 9(3):769-786.
[116] BARTHÉLEMY M. Spatial networks[J]. Physics Reports, 2011, 499(1/2/3):1-101.
[117] HOLME P, SARAMÄKI J. Temporal networks[J]. Physics Reports, 2012, 519(3):97-125.
[118] PUJARI B S, SHEKATKAR S. Multi-city modeling of epidemics using spatial networks: application to 2019-nCov(COVID-19)coronavirus in India[J]. Medrxiv, 2020: 2020.03.13.20035386.
[119] FRIESWIJK K, ZINO L, CAO M. A polarized temporal network model to study the spread of recurrent epidemic diseases in a partially vaccinated population[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6):3732-3743.
[120] PORTER M A. Nonlinearity+networks: a 2020 vision[M] //KEVREKIDIS P, CUEVAS-MARAVER J, SAXENA A. Emerging Frontiers in Nonlinear Science. Cham: Springer International Publishing, 2020:131-159.
[121] GUPTA C, TUNCER N, MARTCHEVA M. A network immuno-epidemiological HIV model[J]. Bulletin of Mathematical Biology, 2021, 83(3):18.
[122] SMITH H L, DE LEENHEER P. Virus dynamics: a global analysis[J]. SIAM Journal on Applied Mathematics, 2003, 63(4):1313-1327.
[123] GUPTA C, TUNCER N, MARTCHEVA M. A network immuno-epidemiological model of HIV and opioid epidemics[J]. Mathematical Biosciences and Engineering, 2023, 20(2):4040-4068.
[124] DUAN X C, Li X Z, MARTCHEVA M. Coinfection dynamics of heroin transmission and HIV infection in a single population[J]. Journal of Biological Dynamics, 2020, 14(1):116-142.
[125] U.S. Overdose deaths in 2021 increased half as much as in 2020-but are still up 15 percent, 2022 [EB/OL].(2022-03-07)[2025-02-18]. https://www.cdc.gov/nchs/pressroom/nchs press releases/2022/202205.html
[126] Centers for Disease Control and Prevention, HIV basic statistics, 2022[EB/OL].(2022-04-09)[2025-02-18]. https://www.cdc.gov/hiv/basics/statistics.html.
[127] YANG Junyuan, DUAN Xinyi, LI Xuezhi. Dynamical analysis of an immumo-epidemiological coupled system on complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 119:107116.
[128] HAN Zhimin, WANG Yi, JIN Zhen. Final and peak epidemic sizes of immuno-epidemiological SIR models[J]. Discrete and Continuous Dynamical Systems-B, 2024, 29(11):4432-4462.
[129] GILCHRIST M A, COOMBS D. Evolution of virulence: interdependence, constraints, and selection using nested models[J]. Theoretical Population Biology, 2006, 69(2):145-153.
[1] Weiyuan MA,Zhiming LI,Changping DAI. Topology identification of fractional complex networks based on variable substitution control method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 53-60.
[2] WANG Jing-hong, LIANG Li-na, LI Hao-kang, WANG Xi-zhao. Community discovery algorithm based on label attention mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 1-12.
[3] Jing-hong WANG,Li-na LIANG,Hao-kang LI,Yi ZHOU. Community discovery algorithm based on attention network feature [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 1-12,20.
[4] Yi-ming ZHANG,Guo-yin WANG,Jun HU,Shun FU. Overlapping community detection based on density peaks and network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 91-102.
[5] Si-min WEI,Xian-hua ZHANG,Zhen ZHANG,Qing-chun MENG,Xia-ran ZHANG. Virtual brand community opinion leader recognition based on complex network——example of the Meizu Flyme community [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 26-34.
[6] WANG Xin, ZUO Wan-li, ZHU Feng-tong, WANG Ying. Important-node-based community detection algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 67-77.
[7] SUN Song-tao, HE Yan-xiang, CAI Rui, LI Fei, HE Fei-yan. Comparative study of methods for Micro-blog sentiment evaluation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!