JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 91-102.doi: 10.6040/j.issn.1671-9352.4.2020.145
• • Previous Articles Next Articles
Yi-ming ZHANG(),Guo-yin WANG*(),Jun HU,Shun FU
CLC Number:
1 |
RODRIGUEZ A , LAIO A . Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496.
doi: 10.1126/science.1242072 |
2 | CUI P , WANG X , PEI J , et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31 (5): 833- 852. |
3 |
PALLA G , DERÉNYI I , FARKAS I , et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435 (7043): 814- 818.
doi: 10.1038/nature03607 |
4 |
RAGHAVAN U N , ALBERT R , KUMARA S . Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76 (3): 036106.
doi: 10.1103/PhysRevE.76.036106 |
5 |
GREGORY S . Finding overlapping communities in networks by label propagation[J]. New Journal of Physics, 2010, 12 (10): 103018.
doi: 10.1088/1367-2630/12/10/103018 |
6 | LU M , ZHANG Z , QU Z , et al. LPANNI: overlapping community detection using label propagation in large-scale complex networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31 (9): 1736- 1749. |
7 |
AHN Y Y , BAGROW J P , LEHMANN S . Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466 (7307): 761- 764.
doi: 10.1038/nature09182 |
8 |
LANCICHINETTI A , FORTUNATO S , KERTÉSZ J . Detecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009, 11 (3): 033015.
doi: 10.1088/1367-2630/11/3/033015 |
9 |
LANCICHINETTI A , RADICCHI F , RAMASCO J J , et al. Finding statistically significant communities in networks[J]. PloS One, 2011, 6 (4): e18961.
doi: 10.1371/journal.pone.0018961 |
10 | WHANG J J, GLEICH D F, DHILLON I S. Overlapping community detection using seed set expansion[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM, 2013: 2099-2108. |
11 |
BAI X , YANG P , SHI X . An overlapping community detection algorithm based on density peaks[J]. Neurocomputing, 2017, 226, 7- 15.
doi: 10.1016/j.neucom.2016.11.019 |
12 | 黄岚, 李玉, 王贵参, 等. 基于点距离和密度峰值聚类的社区发现方法[J]. 吉林大学学报(工学版), 2016, 46 (6): 2042- 2051. |
HUANG Lan , LI Yu , WANG Guishen , et al. Community detection method based on vertex distance and clustering of density peaks[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46 (6): 2042- 2051. | |
13 | PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2014: 701-710. |
14 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2016: 855-864. |
15 | WANG D, CUI P, ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2016: 1225-1234. |
16 | TANG J, QU M, WANG M, et al. Line: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Switzerland: ACM, 2015: 1067-1077. |
17 | LI A Q, AHMED A, RAVI S, et al. Reducing the sampling complexity of topic models[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 891-900. |
18 | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems. Lake Tahoe: ACM, 2013: 3111-3119. |
19 | RECHT B, RE C, WRIGHT S, et al. Hogwild: a lock-free approach to parallelizing stochastic gradient descent[C]//Advances in Neural Information Processing Systems. Granada: ACM, 2011: 693-701. |
20 | MCDAID A F, GREENE D, HURLEY N. Normalized mutual information to evaluate overlapping community finding algorithms[J]. arXiv Preprint arXiv: 1110.2515, 2011. |
21 |
COLLINS L M , DENT C W . Omega: a general formulation of the rand index of cluster recovery suitable for non-disjoint solutions[J]. Multivariate Behavioral Research, 1988, 23 (2): 231- 242.
doi: 10.1207/s15327906mbr2302_6 |
22 |
SHEN H , CHENG X , CAI K , et al. Detect overlapping and hierarchical community structure in networks[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388 (8): 1706- 1712.
doi: 10.1016/j.physa.2008.12.021 |
23 |
HUBERT L , ARABIE P . Comparing partitions[J]. Journal of Classification, 1985, 2 (1): 193- 218.
doi: 10.1007/BF01908075 |
24 | XIE J, SZYMANSKI B K. Towards linear time overlapping community detection in social networks[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2012: 25-36. |
25 | COSCIA M, ROSSETTI G, GIANNOTTI F, et al. Demon: a local-first discovery method for overlapping communities[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 615-623. |
26 |
LANCICHINETTI A , FORTUNATO S , RADICCHI F . Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78 (4): 046110.
doi: 10.1103/PhysRevE.78.046110 |
27 |
ZACHARY W W . An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33 (4): 452- 473.
doi: 10.1086/jar.33.4.3629752 |
28 |
GIRVAN M , NEWMAN M E J . Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99 (12): 7821- 7826.
doi: 10.1073/pnas.122653799 |
29 | YIN H, BENSON A R, LESKOVEC J, et al. Local higher-order graph clustering[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 555-564. |
30 |
GLEISER P M , DANON L . Community structure in jazz[J]. Advances in Complex Systems, 2003, 6 (4): 565- 573.
doi: 10.1142/S0219525903001067 |
31 | KNUTH D E . The stanford graphbase: a platform for combinatorial computing[M]. New York: ACM Press, 1993. |
32 | LESKOVEC J, MCAULEY J J. Learning to discover social circles in ego networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe: ACM, 2012: 539-547. |
[1] | Kan XU,Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN,Bo XU. Academic paper recommendation based on heterogeneous network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 35-45. |
[2] | YANG Ya-ru, WANG Yong-qing, ZHANG Zhi-bin, LIU Yue, CHENG Xue-qi. Social network user identity linkage model based on comprehensive information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 105-113. |
[3] | WANG Xin, ZUO Wan-li, ZHU Feng-tong, WANG Ying. Important-node-based community detection algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 67-77. |
[4] | Si-min WEI,Xian-hua ZHANG,Zhen ZHANG,Qing-chun MENG,Xia-ran ZHANG. Virtual brand community opinion leader recognition based on complex network——example of the Meizu Flyme community [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 26-34. |
[5] | SUN Song-tao, HE Yan-xiang, CAI Rui, LI Fei, HE Fei-yan. Comparative study of methods for Micro-blog sentiment evaluation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 43-50. |
|