JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 91-102.doi: 10.6040/j.issn.1671-9352.4.2020.145
ZHANG Yi-ming, WANG Guo-yin*, HU Jun, FU Shun
CLC Number:
[1] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496. [2] CUI P, WANG X, PEI J, et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(5):833-852. [3] PALLA G, DERÉNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043):814-818. [4] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3):036106. [5] GREGORY S. Finding overlapping communities in networks by label propagation[J]. New Journal of Physics, 2010, 12(10):103018. [6] LU M, ZHANG Z, QU Z, et al. LPANNI: overlapping community detection using label propagation in large-scale complex networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(9):1736-1749. [7] AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307):761-764. [8] LANCICHINETTI A, FORTUNATO S, KERTÉSZ J. Detecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009, 11(3):033015. [9] LANCICHINETTI A, RADICCHI F, RAMASCO J J, et al. Finding statistically significant communities in networks[J]. PloS One, 2011, 6(4):e18961. [10] WHANG J J, GLEICH D F, DHILLON I S. Overlapping community detection using seed set expansion[C] //Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM, 2013: 2099-2108. [11] BAI X, YANG P, SHI X. An overlapping community detection algorithm based on density peaks[J]. Neurocomputing, 2017, 226:7-15. [12] 黄岚, 李玉, 王贵参, 等. 基于点距离和密度峰值聚类的社区发现方法[J]. 吉林大学学报(工学版), 2016, 46(6):2042-2051. HUANG Lan, LI Yu, WANG Guishen, et al. Community detection method based on vertex distance and clustering of density peaks[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6):2042-2051. [13] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2014: 701-710. [14] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2016: 855-864. [15] WANG D, CUI P, ZHU W. Structural deep network embedding[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2016: 1225-1234. [16] TANG J, QU M, WANG M, et al. Line: large-scale information network embedding[C] //Proceedings of the 24th International Conference on World Wide Web. Switzerland: ACM, 2015: 1067-1077. [17] LI A Q, AHMED A, RAVI S, et al. Reducing the sampling complexity of topic models[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 891-900. [18] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C] //Advances in Neural Information Processing Systems. Lake Tahoe: ACM, 2013: 3111-3119. [19] RECHT B, RE C, WRIGHT S, et al. Hogwild: a lock-free approach to parallelizing stochastic gradient descent[C] //Advances in Neural Information Processing Systems. Granada: ACM, 2011: 693-701. [20] MCDAID A F, GREENE D, HURLEY N. Normalized mutual information to evaluate overlapping community finding algorithms[J]. arXiv Preprint arXiv:1110.2515, 2011. [21] COLLINS L M, DENT C W. Omega: a general formulation of the rand index of cluster recovery suitable for non-disjoint solutions[J]. Multivariate Behavioral Research, 1988, 23(2):231-242. [22] SHEN H, CHENG X, CAI K, et al. Detect overlapping and hierarchical community structure in networks[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(8):1706-1712. [23] HUBERT L, ARABIE P. Comparing partitions[J]. Journal of Classification, 1985, 2(1):193-218. [24] XIE J, SZYMANSKI B K. Towards linear time overlapping community detection in social networks[C] //Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2012: 25-36. [25] COSCIA M, ROSSETTI G, GIANNOTTI F, et al. Demon: a local-first discovery method for overlapping communities[C] //Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 615-623. [26] LANCICHINETTI A, FORTUNATO S, RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4):046110. [27] ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4):452-473. [28] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826. [29] YIN H, BENSON A R, LESKOVEC J, et al. Local higher-order graph clustering[C] //Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 555-564. [30] GLEISER P M, DANON L. Community structure in jazz[J]. Advances in Complex Systems, 2003, 6(4):565-573. [31] KNUTH D E. The stanford graphbase: a platform for combinatorial computing[M]. New York: ACM Press, 1993. [32] LESKOVEC J, MCAULEY J J. Learning to discover social circles in ego networks[C] //Advances in Neural Information Processing Systems. Lake Tahoe: ACM, 2012: 539-547. |
[1] | Kan XU,Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN,Bo XU. Academic paper recommendation based on heterogeneous network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 35-45. |
[2] | YANG Ya-ru, WANG Yong-qing, ZHANG Zhi-bin, LIU Yue, CHENG Xue-qi. Social network user identity linkage model based on comprehensive information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 105-113. |
[3] | WANG Xin, ZUO Wan-li, ZHU Feng-tong, WANG Ying. Important-node-based community detection algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 67-77. |
[4] | Si-min WEI,Xian-hua ZHANG,Zhen ZHANG,Qing-chun MENG,Xia-ran ZHANG. Virtual brand community opinion leader recognition based on complex network——example of the Meizu Flyme community [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 26-34. |
[5] | SUN Song-tao, HE Yan-xiang, CAI Rui, LI Fei, HE Fei-yan. Comparative study of methods for Micro-blog sentiment evaluation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 43-50. |
|