JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (9): 41-51.doi: 10.6040/j.issn.1671-9352.0.2024.377

Previous Articles    

Topology construction and control based on long short-term prediction

YAN Li1, HU Hailin1, WANG Gaozhou1, ZHANG Wenbin1, PAN Fading1, ZHANG Xiao2, ZHENG Yanwei2*   

  1. 1. State Grid Shandong Electric Power Company Information and Communication Company, Jinan 250013, Shandong, China;
    2. School of Computer Science and Technology, Shandong University, Qingdao 266237, Shandong, China
  • Published:2025-09-10

Abstract: To optimize dynamic network topology construction and resource allocation, a long short-term prediction-based topology construction and control(LSPTCC)framework is proposed. Long short-term memory(LSTM)network and Informer models are employed for long short-term prediction of multivariate time series. Temporal dependencies and non-stationary fluctuations in the data are accurately captured. Based on the prediction results, the enhanced capacity constrained design(ECCD)algorithm is used to construct a minimum spanning tree(MST)and to optimize the connections between nodes to minimize overall transmission losses. Additionally, a maximum network flow algorithm is applied to dynamically adjust resource allocation, ensuring efficient utilization of resources under fluctuating conditions. Experiments conducted on a photovoltaic consumption dataset demonstrate that the proposed framework can accurately predict power generation and consumption. The power transmission losses are effectively reduced by optimizing both the topology and resource allocation. The efficiency and robustness of the proposed algorithms are validated.

Key words: long short-term prediction, minimum spanning tree, maximum network flow algorithm, dynamic network topology

CLC Number: 

  • TP183
[1] YU Yong, SI Xiaosheng, HU Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7):1235-1270.
[2] DEY R, SALEM F M. Gate-variants of gated recurrent unit(GRU)neural networks[C] //2017 IEEE 60th International Midwest Symposium on Circuits and Systems(MWSCAS). Medford: IEEE, 2017:1597-1600.
[3] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Advances in Neural Information Processing Systems. Vancouver: Curran Associates, 2017:6000-6010.
[4] HAN Kai, WANG Yifan, CHEN Huazhong, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1):87-110.
[5] ZHOU Haibo, ZHANG Shuang, PENG Jianxin, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C] //Proceedings of the 35th AAAI Conference on Artificial Intelligence. Virtual: AAAI, 2021:11106-11115.
[6] 王红瑞,刘晓红,唐奇,等. 基于小波变换的支持向量机水文过程预测[J]. 清华大学学报(自然科学版),2010,50(9):1378-1382. WANG Hongrui, LIU Xiaohong, TANG Qi, et al. Hydrological process prediction based on wavelet transform and support vector machine[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(9):1378-1382.
[7] 李洁,林永峰,陈亮,等. 基于深度经验模态分解的金融市场时序预测[J]. 计算机工程与设计,2019,40(12):3613-3619. LI Jie, LIN Yongfeng, CHEN Liang, et al. Financial market time series prediction based on deep empirical mode decomposition[J]. Computer Engineering and Design, 2019, 40(12):3613-3619.
[8] PAVLYSHENKO B. Using stacking approaches for machine learning models[C] //2018 IEEE Second International Conference on Data Stream Mining & Processing(DSMP). Lviv: IEEE, 2018:255-258.
[9] OSIPOV V, SANDERS P SINGLER J. The filter-kruskal minimum spanning tree algorithm[C] //The Eleventh Workshop on Algorithm Engineering and Experiments(ALENEX). New York: Society for Industrial and Applied Mathematics, 2009:52-61.
[10] LI Haiming, XIA Qiyang, WANG Yong. Research and improvement of Kruskal algorithm[J]. Journal of Computer and Communications, 2017, 5(12):63-69.
[11] MANEN S, GUILLAUMIN M, GOOL L V. Prime object proposals with randomized Prims algorithm[C] //Proceedings of the IEEE International Conference on Computer Vision(ICCV). Sydney: IEEE, 2013:2536-2543.
[12] DAGAR Sunny. Modified Prims algorithm[J]. Journal of Computer and Information Technology, 2012, 3(2):26-29.
[13] 来卫国,李鸥,程军,等. 一种新的求解度约束最小生成树的遗传算法[J]. 计算机仿真,2008,25(8):162-165. LAI Weiguo, LI Ou, CHENG Jun, et al. A new genetic algorithm for solving degree-constrained minimum spanning tree[J]. Computer Simulation, 2008, 25(8):162-165.
[14] 周毅,周良才,丁佳立,等. 基于深度强化学习的电网拓扑优化和潮流控制的方法[J]. 上海交通大学学报,2021,55(增刊2):25-31. ZHOU Yi, ZHOU Liangcai, DING Jiali, et al. Method for topology optimization and power flow control based on deep reinforcement learning[J]. Journal of Shanghai Jiao Tong University, 2021,55(Suppl.2):25-31.
[15] 富坤,高金辉,赵晓梦,等. 融合全局结构信息的拓扑优化图卷积网络[J]. 计算机应用,2022,42(2):357-364. FU Kun, GAO Jinhui, ZHAO Xiaomeng, et al. Topology optimization graph convolutional network integrating global structural information[J]. Computer Applications, 2022, 42(2):357-364.
[16] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. Cambridge: MIT Press, 2009:714-731.
[17] EDMONDS J, KARP R M, Theoretical improvements in algorithmic efficiency for network flows[J]. Journal of the ACM, 1972, 19(2):248-264.
[18] GOLDBERG A V, TARJAN R E. A new approach to the maximum flow problem[J]. Journal of the ACM, 1988, 35(4):921-940.
[19] KORTE B, VYGEN J. Combinatorial optimization: theory and algorithms[M]. Berlin: Springer, 2012:177-214.
[20] ORLIN J B. Max flows in O(nm)time or better[C] //Proceedings of the 45th Annual ACM Symposium on Theory of Computing(STOC). Palo Alto: ACM, 2013:765-774.
[21] BIRGE J R, LOUVEAUX F. Introduction to stochastic programming[M]. New York: Springer, 2011.
[22] BEN-TAL A, NEMIROVSKI A. Robust optimization: methodology and applications[J]. Mathematical Programming, 2000,92(3):453-480.
[23] MIETTINEN K. Nonlinear multiobjective optimization[M]. Dordrecht: Kluwer Academic Publishers, 1999:239-249.
[24] DEAN J, GHEMAWAT S. Mapreduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113.
[1] Xiuxi WEI,Maosong PENG,Huajuan HUANG. Optimization of hydrogeological parameters based on improved butterfly optimization algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 37-50.
[2] Kan XU,Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN,Bo XU. Academic paper recommendation based on heterogeneous network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 35-45.
[3] Chao ZHANG,Ying LIANG,Hao-shan FANG. Social network information recommendation method of supporting privacy protection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 9-18.
[4] Xiao-jie XIE,Ying LIANG,Xiang-xiang DONG. Sensitive attribute iterative inference method for social network users [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 10-17, 27.
[5] XIAO Wei-ming, WANG Gui-jun. Design and approximation of SISO three layers feedforward neural network based on Bernstein polynomials [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 55-61.
[6] SUO Chun-feng, WANG Gui-jun. Potential influence of maximum interactive number on non-homogeneous T-S fuzzy system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 14-19.
[7] TUN Rui-Hai, DONG Ji-Wen, DUAN Qi-Qiang. A scale chaos particle swarm optimization algorithm and the wavelet  in the forecast application of foundation settlement [J]. J4, 2009, 44(11): 75-78.
[8] . An online estimation algorithm of driver’s learning process [J]. J4, 2009, 44(7): 83-88.
[9] ZHU Shi-wei,SAI Ying . The prediction model of financial distress of Chinese listed corporations based on a hybrid RPR model [J]. J4, 2008, 43(11): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!