JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (9): 41-51.doi: 10.6040/j.issn.1671-9352.0.2024.377
YAN Li1, HU Hailin1, WANG Gaozhou1, ZHANG Wenbin1, PAN Fading1, ZHANG Xiao2, ZHENG Yanwei2*
CLC Number:
[1] YU Yong, SI Xiaosheng, HU Changhua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7):1235-1270. [2] DEY R, SALEM F M. Gate-variants of gated recurrent unit(GRU)neural networks[C] //2017 IEEE 60th International Midwest Symposium on Circuits and Systems(MWSCAS). Medford: IEEE, 2017:1597-1600. [3] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Advances in Neural Information Processing Systems. Vancouver: Curran Associates, 2017:6000-6010. [4] HAN Kai, WANG Yifan, CHEN Huazhong, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1):87-110. [5] ZHOU Haibo, ZHANG Shuang, PENG Jianxin, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C] //Proceedings of the 35th AAAI Conference on Artificial Intelligence. Virtual: AAAI, 2021:11106-11115. [6] 王红瑞,刘晓红,唐奇,等. 基于小波变换的支持向量机水文过程预测[J]. 清华大学学报(自然科学版),2010,50(9):1378-1382. WANG Hongrui, LIU Xiaohong, TANG Qi, et al. Hydrological process prediction based on wavelet transform and support vector machine[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(9):1378-1382. [7] 李洁,林永峰,陈亮,等. 基于深度经验模态分解的金融市场时序预测[J]. 计算机工程与设计,2019,40(12):3613-3619. LI Jie, LIN Yongfeng, CHEN Liang, et al. Financial market time series prediction based on deep empirical mode decomposition[J]. Computer Engineering and Design, 2019, 40(12):3613-3619. [8] PAVLYSHENKO B. Using stacking approaches for machine learning models[C] //2018 IEEE Second International Conference on Data Stream Mining & Processing(DSMP). Lviv: IEEE, 2018:255-258. [9] OSIPOV V, SANDERS P SINGLER J. The filter-kruskal minimum spanning tree algorithm[C] //The Eleventh Workshop on Algorithm Engineering and Experiments(ALENEX). New York: Society for Industrial and Applied Mathematics, 2009:52-61. [10] LI Haiming, XIA Qiyang, WANG Yong. Research and improvement of Kruskal algorithm[J]. Journal of Computer and Communications, 2017, 5(12):63-69. [11] MANEN S, GUILLAUMIN M, GOOL L V. Prime object proposals with randomized Prims algorithm[C] //Proceedings of the IEEE International Conference on Computer Vision(ICCV). Sydney: IEEE, 2013:2536-2543. [12] DAGAR Sunny. Modified Prims algorithm[J]. Journal of Computer and Information Technology, 2012, 3(2):26-29. [13] 来卫国,李鸥,程军,等. 一种新的求解度约束最小生成树的遗传算法[J]. 计算机仿真,2008,25(8):162-165. LAI Weiguo, LI Ou, CHENG Jun, et al. A new genetic algorithm for solving degree-constrained minimum spanning tree[J]. Computer Simulation, 2008, 25(8):162-165. [14] 周毅,周良才,丁佳立,等. 基于深度强化学习的电网拓扑优化和潮流控制的方法[J]. 上海交通大学学报,2021,55(增刊2):25-31. ZHOU Yi, ZHOU Liangcai, DING Jiali, et al. Method for topology optimization and power flow control based on deep reinforcement learning[J]. Journal of Shanghai Jiao Tong University, 2021,55(Suppl.2):25-31. [15] 富坤,高金辉,赵晓梦,等. 融合全局结构信息的拓扑优化图卷积网络[J]. 计算机应用,2022,42(2):357-364. FU Kun, GAO Jinhui, ZHAO Xiaomeng, et al. Topology optimization graph convolutional network integrating global structural information[J]. Computer Applications, 2022, 42(2):357-364. [16] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. Cambridge: MIT Press, 2009:714-731. [17] EDMONDS J, KARP R M, Theoretical improvements in algorithmic efficiency for network flows[J]. Journal of the ACM, 1972, 19(2):248-264. [18] GOLDBERG A V, TARJAN R E. A new approach to the maximum flow problem[J]. Journal of the ACM, 1988, 35(4):921-940. [19] KORTE B, VYGEN J. Combinatorial optimization: theory and algorithms[M]. Berlin: Springer, 2012:177-214. [20] ORLIN J B. Max flows in O(nm)time or better[C] //Proceedings of the 45th Annual ACM Symposium on Theory of Computing(STOC). Palo Alto: ACM, 2013:765-774. [21] BIRGE J R, LOUVEAUX F. Introduction to stochastic programming[M]. New York: Springer, 2011. [22] BEN-TAL A, NEMIROVSKI A. Robust optimization: methodology and applications[J]. Mathematical Programming, 2000,92(3):453-480. [23] MIETTINEN K. Nonlinear multiobjective optimization[M]. Dordrecht: Kluwer Academic Publishers, 1999:239-249. [24] DEAN J, GHEMAWAT S. Mapreduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113. |
[1] | Xiuxi WEI,Maosong PENG,Huajuan HUANG. Optimization of hydrogeological parameters based on improved butterfly optimization algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 37-50. |
[2] | Kan XU,Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN,Bo XU. Academic paper recommendation based on heterogeneous network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 35-45. |
[3] | Chao ZHANG,Ying LIANG,Hao-shan FANG. Social network information recommendation method of supporting privacy protection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 9-18. |
[4] | Xiao-jie XIE,Ying LIANG,Xiang-xiang DONG. Sensitive attribute iterative inference method for social network users [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 10-17, 27. |
[5] | XIAO Wei-ming, WANG Gui-jun. Design and approximation of SISO three layers feedforward neural network based on Bernstein polynomials [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 55-61. |
[6] | SUO Chun-feng, WANG Gui-jun. Potential influence of maximum interactive number on non-homogeneous T-S fuzzy system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 14-19. |
[7] | TUN Rui-Hai, DONG Ji-Wen, DUAN Qi-Qiang. A scale chaos particle swarm optimization algorithm and the wavelet in the forecast application of foundation settlement [J]. J4, 2009, 44(11): 75-78. |
[8] | . An online estimation algorithm of driver’s learning process [J]. J4, 2009, 44(7): 83-88. |
[9] | ZHU Shi-wei,SAI Ying . The prediction model of financial distress of Chinese listed corporations based on a hybrid RPR model [J]. J4, 2008, 43(11): 48-53 . |
|