JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (7): 74-80.doi: 10.6040/j.issn.1671-9352.1.2015.094

Previous Articles     Next Articles

Research of gender prediciton based on SVM with E-commerce data

PENG Qiu-fang, LIU Yang   

  1. Software College, Shandong University, Jinan 250000, Shandong, China
  • Received:2015-11-14 Online:2016-07-20 Published:2016-07-27

Abstract: Different gender of Users have different view on products, particularly in appreciation of fashion related products, the gender influence is much important. This paper used seven characteristics choosed from online based e-commerce product browsing history data and used support vector machines(SVM)set model by these seven characteristics to predict users' gender. By analysing and training the model, accuracy of gender prediction reached up to 79.21%.While taking advantage of the problem, the paper discusseed the differences between online shopping and offline shopping and do the research about the kernel function of support vector machine and other performance, give the theory and practice reference for the selection of kernel functions and selection of support vector machine.

Key words: E-commerce, performance study, SVM, gender prediction

CLC Number: 

  • TP393
[1] 惠红, 丁钢, 敬阳. 网购休闲行为性别差异研究[J]. 电子商务, 2010(2):17-19. HUI Hong, DING Gang, JING Yang. Research on gender differences in online shopping leisure behavior[J]. Electronic Commerce, 2010(2):17-19.
[2] 张姝姝, 张智光. 网购行为性别差异与网络营销策略[J]. 南京林业大学学报:人文社会科学版, 2012, 12(2):94-99. ZHANG Shushu, ZHANG Zhiguang. Gender difference in online shopping behavior and strategy research on network marketing[J]. Journal of Nanjing Forestry University(Humanities and Social Sciences Edition), 2012, 12(2):94-99.
[3] SEOCK Y K, BAILEY L R. The influence of college students' shopping orientations and gender differences on online information searches and purchase behaviours[J]. International Journal of Consumer Studies, 2008, 32(2):113-121.
[4] 张小英. 购物中心消费者行为的性别差异研究——以广州市为例[J]. 商业时代, 2014(16):16-18. ZHANG Xiaoying. Gender differences in consumer behavior of shopping centers: a case study of Guangzhou city[J]. Commercial Age, 2014(16):16-18.
[5] 蒋欢, 周发明. 影响网络购物意向因素的性别差异研究[J]. 企业技术开发:学术版, 2010, 29(7):90-91. JIANG Huan, ZHOU Faming. The research pm factors affecting online shopping intention of different gender[J]. Technological Development of Enterprise, 2010, 29(7):90-91.
[6] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10. DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1):2-10.
[7] HASSAN U K, NAWI N M, KASIM S. Classify a protein domain using sigmoid support vector machine[C] //Proceedings of ICISA. New York: IEEE, 2014: 1-4.
[8] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 247-259.
[9] TANG T, GUO Q, YANG M. Support vector machine based particle swarm optimization localization algorithm in WSN[J]. Journal of Convergence Information Technology, 2012, 7(1):497-503.
[10] 孙刚, 王志平, 王明新. 一种提高支持向量机性能的特征选择新方法[J]. 计算机工程与应用, 2008, 44(3):183-185. SUN Gang, WANG Zhiping, WANG Mingxin. New feature selection method of improve performance of SVM[J]. Computer Engineering and Application, 2008, 44(3):183-185.
[11] POWERS D M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[J]. Journal of Machine Learning Technologies, 2008, 2:2229-3981.
[12] BARANDELA R, VALDOVINOS R M, SÁNCHEZ J S, et al. The imbalanced training sample problem: under or over sampling?[J]. Structural, Syntactic, and Statistical Pattern Recognition, 2004, 3138: 806-814.
[1] GONG Shuang-shuang, CHEN Yu-feng, XU Jin-an, ZHANG Yu-jie. Extraction of Chinese multiword expressions based on Web text [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 40-48.
[2] SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7-12.
[3] GAO Xiao-bo, FANG Xian-mei, LI Shi-jun. Trust-aware product recommendation based on factorization machine [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 89-94.
[4] ZHU Rui. E-commerce community clustering model based on trust [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 18-22.
[5] LIU Biao1,2, CHEN Chun-ping3, FENG Hua-min1,3, LI Yang3. A SVM parameters selection algorithm based on Fisher criterion [J]. J4, 2012, 47(7): 50-54.
[6] XIAO Xue-mei1, ZHANG Ren-jin1,2*. The research of SOA-based tourism e-commerce system security model [J]. J4, 2011, 46(9): 81-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!