JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (7): 52-58.doi: 10.6040/j.issn.1671-9352.1.2016.072

Previous Articles     Next Articles

Emotion-specific word embedding learning for emotion classification

DU Man, XU Xue-ke, DU Hui, WU Da-yong, LIU Yue, CHENG Xue-qi   

  1. CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-11-25 Online:2017-07-20 Published:2017-07-07

Abstract: We present a method for emotion classification based on word vector learning which considering the inner patterns and emotion labels of words. Based on the CBOW model, we introduce the inner patterns and the emotion label, in order to enrich the emotional semantics of the word vectors. For one input document, according to the TF-IDF weight of the word, we use the weighted linear combination as the text representation. We use the word vectors or text vectors as the input of the emotion classifier, using machine learning classification method(LR, SVM, CNN), to verify the experimental results in emotion classification task. Experiments show that the presented algorithm performs better than CBOW model.

Key words: word embedding, emotion analysis, emotion labels, emotion classification, word inner pattern

CLC Number: 

  • TP391.1
[1] MISHNE G. Experiments with mood classification in blog posts[C] //Proceedings of 1st Workshop on Stylistic Analysis of Text for Information Access(Style2005). Sweden: Institute of Computer Science, 2005: 47-54.
[2] GHAZI D, INKPEN D, SZPAKOWICZ S. Hierarchical versus flat classification of emotions in text[C] //Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.Stroudsburg: Association for Computational Linguistics, 2010: 140-146.
[3] DAVIDOV D, TSUR O, RAPPOPORT A. enhanced sentiment learning using twitter hashtags and smileys[C] //Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Stroudsburg: Association for Computational Linguistics, 2010: 241-249.
[4] GOLDER S A, MACY M W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures[J]. Science, 2011, 333(6051):1878-1881.
[5] PALTOGLOU G, THELWALL M. Twitter, myspace, digg: unsupervised sentiment analysis in social media[J]. Acm Transactions on Intelligent Systems & Technology, 2012, 3(4):67-83.
[6] 谢丽星, 周明, 孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报, 2012, 26(1):73-83. XIE Lixing, ZHOU Ming, SUN Maosong. Hierarchical structure based hybrid approach tosentiment analysis of chinese micro blog and its feature extraction[J]. Journal of Chinese Information Processing, 2012, 26(1):73-83.
[7] 刘宝芹, 牛耘. 多层次中文微博情绪分析[J]. 计算机技术与发展, 2015, 25(11):23-26. LIU Baoqin, NIU Yun.multi-hierarchy emotion analysis of chinese microblog[J].Computer Technology and Development, 2015, 25(11):23-26.
[8] 欧阳纯萍, 阳小华, 雷龙艳, 等. 多策略中文微博细粒度情绪分析研究[J]. 北京大学学报(自然科学版), 2014, 50(1):67-72. OUYANG Chunping, YANG Xiaohua, LEI Longyan, et al.Multi-strategy approach for fine-grained sentiment analysisofchinese microblog[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(1):67-72.
[9] 雷龙艳. 中文微博细粒度情绪识别研究[D]. 衡阳:南华大学, 2014. LEI Longyan. Research on fine-grained sentiment analysis base on chinese[D]. Henyang:University of South China, 2014.
[10] MIKOLOV Tomas, YIH Wentau, ZWEIG Geoffrey. Linguistic regularities in continuous space word representations[C] //Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(NAACL-HLT-2013). Stroudsburg: Association for Computational Linguistics, 2013: 746-751.
[11] MIKOLOV T, SUTSKEVER I, CHENK, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26:3111-3119.
[12] MIKOLOV Tomas, CHEN Kai, CORRADO Greg, et al. Efficient estimation of word representations in vector space[J]. Eprint Arxiv, 2013, arXiv:1301.3781.
[13] KIM Y. Convolutional neural networks for sentence classification[C] //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg: Association for Computational Linguistics, 2014: 1746-1751.
[1] . Reader emotion classification with news and comments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 35-39.
[2] HUANG Dong, XU Bo, XU Kan, LIN Hong-fei, YANG Zhi-hao. Short text clustering based on word embeddings and EMD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 66-72.
[3] SHI Han-xiao, LI Xiao-jun, HAO Teng-da, LIU Hong, ZHU Liu-qing. Emotion analysis on Microblog short text [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 80-90.
[4] MA Cheng-long, JIANG Ya-song, LI Yan-ling, ZHANG Yan, YAN Yong-hong. Short text classification based on word embedding similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!