JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (3): 56-66.doi: 10.6040/j.issn.1671-9352.1.2018.100

•   • Previous Articles     Next Articles

Tag recommendation with multi-source heterogeneous networked information

Heng-ze BAO(),Dong ZHOU*(),Tan WU   

  1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • Received:2018-10-17 Online:2019-03-01 Published:2019-03-19
  • Contact: Dong ZHOU E-mail:2275050078@qq.com;dongzhou1979@hotmail.com
  • Supported by:
    国家自然科学基金资助项目(61876062);湖南省自然科学基金资助项目(2017JJ2101);湖南省教育厅科研项目(16K030)

Abstract:

Tags have been utilized extensively to associate various online resources, such as articles, images and movies, aiming at helping users understand and facilitate the process of managing and indexing huge web resources. Since it is time-consuming and prone for errors to create manual tags for these resources, automatic tag recommendation techniques have attracted widespread attention. At present, most tag recommendation methods mainly recommend tags by mining content information of resources. However, Most data information in the real world do not exist independently. For example, science articles have a complex network structure by referencing each other. The research show that the topology information and text content information of resources describe the similar semantic features of re-sources from two different perspectives, and the information from two aspects can complement and explain for each other. Based on this, we propose a probabilistic topic model and a tag recommendation method for simultaneously modeling content information and topology structure information of resource. This method uses multi-source heterogeneous information, such as tagging relationship between tag and resource content and link relationship between resources to mine potential semantic information of the resources to recommend several tags with similar functional semantics for the new resources. The experimental results on two real data sets prove the effectiveness of our proposed method.

Key words: tag, tag recommendation, topic model, heterogeneous network

CLC Number: 

  • TP391

Fig.1

An article in the CiteULike website"

Fig.2

Search results by using keywords "mesophase" and "petroleum""

Table 1

Common symbols and their meanings"

符号 含义说明
C 表示文章C
C 表示文章C
W(c) 表示文章C的文本内容
W(c′) 表示文章C′的文本内容
θ(c) 表示W(c)的主题分布向量
θ(c′) 表示W(c′)的主题分布向量
T 表示模型中主题的数量
W 语料库中词汇数量
Wt 语料库中标签数量
ϕ 维度为W的向量表示主题下词的分布
ϕt 维度为Wt的向量表示主题下标签的分布
N 根据文章间相似性选择与候选文章相似度最高的N篇文章
M 通过标签过滤算法选出得分最高的M个标签
S 未排序的待推荐标签集
S 排序后的待推荐标签集

Fig.3

TRTM model"

Fig.4

The execution framework of tag recommendation approach"

Table 2

Detailed data information"

数据集 数据 数量
citeulike-a 文章 16980
标签 19107
移除使用次数少于5次后剩余标签 7450
引用关系 294072
citeulike-t 文章 25975
标签 52946
移除使用次数少于5次后剩余标签 8311
引用关系 180103

Fig.5

Recall at top 50 tags changes over topic numbers(T) and iteration times(Iter)"

Fig.6

Experiment results on dataset citeulike-a"

Fig.7

Experiment results on dataste citeulike-t"

Fig.8

Experiment results on dataste citeulike-a"

Fig.9

Experiment results on dataste citeulike-t"

Table 3

An example of tag recommendation for article"

模型 主题最相近文章 推荐标签 正确标签
RTM “an efficient algorithm to rank web resources”
“rank algorithm web graph link”
“searching social networks”
“thermal barrier coatings for gas-turbine engine applications”
pager,resource,scale,web,rank,search,citation,engine,hyperlink,application web, rank, engine
TRTM “the anatomy of a large scale hyper textual web search engine”
“an overview of audio information retrieval”
“pager citation ranking bringing order to web”
“searching social networks”
engine,retrieval,link,hyperlink,search,citation,rank,web,relevance,citation engine,link,search,rank,web
1 王梦恬, 魏晶晶, 廖祥文, 等. 融合评论标签的个性化推荐算法[J]. 计算机科学与探索, 2016, 10 (10): 1429- 1438.
WANG Mengtian , WEI Jingjing , LIAO Xiangwen , et al. Personalized recommendation algorithm fusing comment tag[J]. Journal of Frontiers of Computer Science & Technology, 2016, 10 (10): 1429- 1438.
2 BELÉM F M , ALMEIDA J M , GONALVES M A . A survey on tag recommendation methods[J]. Journal of the Association for Information Science and Technology, 2017, 68 (4): 830- 844.
doi: 10.1002/asi.23736
3 ZHAO W , GUAN Z Y , LIU Z . Ranking on heterogeneous manifolds for tag recommendation in social taggingservices[J]. Neurocomputing, 2015, 148: 521- 534.
doi: 10.1016/j.neucom.2014.07.011
4 BENZARTI M A, CHIDLOVSKⅡ B, VIJAYAKUMAR N. Local metric learning for tag recommendation in social networks using indexing.: US, 9600826[P], 2017.
5 GUO Z , ZHANG Z M , ZHU S H , et al. A two-level topic model towards knowledge discovery from citation networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (4): 780- 794.
doi: 10.1109/TKDE.2013.56
6 WEST J D , WESLEY-SMITH I , BERGSTROM C T . A recommendation system based on hierarchical clustering of an article-level citation network[J]. IEEE Transactions on Big Data, 2016, 2 (2): 113- 123.
doi: 10.1109/TBDATA.2016.2541167
7 WANG M , NI B B , HUA X S , et al. Assistive tagging: a survey of multimedia tagging with human-computer joint exploration[J]. ACM Computing Surveys, 2012, 44 (4): 1- 24.
8 褚晓敏, 王中卿, 朱巧明, 等. 基于简介和评论的标签推荐方法研究[J]. 中文信息学报, 2015, 29 (6): 179- 184.
doi: 10.3969/j.issn.1003-0077.2015.06.024
CHU Xiaomin , WANG Zhongqing , ZHU Qiaoming , et al. Tag recommendation with summary and comment information[J]. Journal of Chinese Information Processing, 2015, 29 (6): 179- 184.
doi: 10.3969/j.issn.1003-0077.2015.06.024
9 LIU Z, CHEN X, SUN M. A simple word trigger method for social tag suggestion[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh: Association for Computational Linguistics, 2011: 1577-1588.
10 BELÉM F M , MARTINS E F , ALMEIDA J M , et al. Personalized and object-centered tag recommendation methods for Web 2.0 applications[J]. Information Processing & Management, 2014, 50 (4): 524- 553.
11 LI W, YEUNG D Y. Social relations model for collaborative filtering[C]// Proceedings of the Twenty-fifth AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2011: 803-808.
12 LOPS P , DE GEMMIS M , SEMERARO G , et al. Content-based and collaborative techniques for tag recommendation: an empirical evaluation[J]. Journal of Intelligent Information Systems, 2013, 40 (1): 41- 61.
doi: 10.1007/s10844-012-0215-6
13 BAO Y, FANG H, ZHANG J. TopicMF: simultaneously exploiting ratings and reviews for recommendation[C]// Proceedings of the Twenty-eighth AAAI Conference on Artificial Intelligence. Québeca: AAAI Press, 2014: 2-8.
14 BURKE R, VAHEDIAN F, MOBASHER B. Hybrid recommendation in heterogeneous networks[C]// Proceedings of the International Conference on User Modeling, Adaptation, and Personalization. Aalborg: Springer, 2014: 49-60.
15 AN S, ZHAO Z, ZHOU H. Research on an agent-based intelligent social tagging recommendation system[C]// Proceedings of International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou: IEEE, 2017: 43-46.
16 闫俊, 刘文飞, 林鸿飞. 基于标签混合语义空间的音乐推荐方法研究[J]. 中文信息学报, 2014, 28 (4): 117- 122.
doi: 10.3969/j.issn.1003-0077.2014.04.016
YAN Jun , LIU Wenfei , LIN Hongfei . Music recommendation study based on tags multi-space[J]. Journal of Chinese Information Processing, 2014, 28 (4): 117- 122.
doi: 10.3969/j.issn.1003-0077.2014.04.016
17 于洪, 邓明瑶, 胡峰. 考虑用户标注状态的标签推荐方法[J]. 模式识别与人工智能, 2014, 27 (8): 673- 682.
doi: 10.3969/j.issn.1003-6059.2014.08.001
YU Hong , DENG Mingyao , HU Feng . Tag recommendation method considering users tagging status[J]. Pattern Recognition and Artificial Intelligence, 2014, 27 (8): 673- 682.
doi: 10.3969/j.issn.1003-6059.2014.08.001
18 WANG H, SHI X, YEUNG D Y. Relational stacked denoising autoencoder for tag recommendation[C]// Proceedings of the Twenty-ninth AAAI Conference on Artificial Intelligence. Austin: AAAI Press, 2015: 3052-3058.
19 KRESTEL R, FANKHAUSER P, NEJDL W. Latent dirichlet allocation for tag recommendation[C]// Proceedings of the third ACM conference on Recommender systems. New York: ACM, 2009: 61-68.
20 SI X , SUN M . Tag-LDA for scalable real-time tag recommendation[J]. Journal of Computational Information Systems, 2008, 6 (1): 1- 8.
21 CHANG J, BLEI D M. Relational topic models for document networks[C]// Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida: JMLR, 2009: 81-88.
22 WANG H, CHEN B, LI W J. Collaborative topic regression with social regularization for tag recommendation[C]// Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence. Beijing: AAAI Press, 2013: 2719-2725.
[1] WANG Xue-mei, CHEN Xin-shu, WANG Hai-zhou, WANG Wen-xian. Automatic extraction of key information for news web pages based on tag and block features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 67-74.
[2] Ying ZHANG,Xue-song MA,Ru-yan JING,Feng-yun MA,Jian-yao GUO,Yan-ping WANG,Hua-tian WANG. Effects of successive-planting poplar plantation on soil microbial community [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 36-46.
[3] DONG Xing-lin, QI Xin. Interactive relationship between two stages of technology input and output in Qingdao city based on time delay effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(5): 80-87.
[4] SUN Shi-chang, LIN Hong-fei, MENG Jia-na, LIU Hong-bo. Model selection with likelihood ratio for sequence transfer learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(6): 24-31.
[5] LIU Kun-lun. Application of variable structure pair copula model in the analysis of financial contagion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 104-110.
[6] WU Huan, ZHAN Jing, ZHAO Yong, TAO Zheng, YANG Jing. An efficient multilevel interconnection network security mechanism based on virtualization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 98-103.
[7] HE Xin-hua, HU Wen-fa, XU Chang-yan, CHEN Ji-hong. Collaborative transshipment strategy of service supply chain for emergencies based on stochastic and fuzzy simulation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 67-77.
[8] ZHANG Shao-qun, WEI Jing-jing, LIAO Xiang-wen, JIAN Si-yuan, CHEN Guo-long. Emotional contagion in Twitter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 71-76.
[9] WANG Xue-bin. Analytical solutions for the multi-term time-space Caputo-Riesz fractional diffusion equations in 2-D and 3-D [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 89-94.
[10] ZHANG Xin-meng, JIANG Sheng-yi, ZHANG Qian-sheng, XIE Bo-lin, LI Xia. Hybrid recommendation by combining network-based algorithm and user preference [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 29-35.
[11] MA Yu-feng, RUAN Tong. Entity set expansion based on LDA and label propagation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 20-27.
[12] ZHENG Yan, PANG Lin, BI Hui, LIU Wei, CHENG Gong. Feature selection algorithm based on sentiment topic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 74-81.
[13] JIAO Lu-lin, PENG Yan, LIN Yun. Comparative research on text knowledge discovery for network public opinion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 62-68.
[14] WANG Shao-peng, PENG Yan, WANG Jie. Research of the text clustering based on LDA using in network public opinion analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 129-134.
[15] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems [J]. J4, 2013, 48(1): 89-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[2] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[3] PEI Sheng-yu,ZHOU Yong-quan. A mult-objective particle swarm optimization algorithm based on  the  chaotic mutation[J]. J4, 2010, 45(7): 18 -23 .
[4] DU Ji-xiang1,2, YU Qing1, ZHAI Chuan-ming1. Age estimation of facial images based on non-negative matrix factorization with sparseness constraints[J]. J4, 2010, 45(7): 65 -69 .
[5] XUE Qiu-fang1,2, GAO Xing-bao1*, LIU Xiao-guang1. Several equivalent conditions for H-matrix based on the extrapolated GaussSeidel iterative method[J]. J4, 2013, 48(4): 65 -71 .
[6] WANG Bing . Properties of a quasi-claw-free graph[J]. J4, 2007, 42(10): 111 -113 .
[7] . [J]. J4, 2009, 44(3): 84 -87 .
[8] WANG Qi,ZHAO Hong-luan . [J]. J4, 2006, 41(6): 84 -86 .
[9] QU Shouning, FU Aifang, LI Jing, LIU Jing. Forecasting stock market risks based on the flexible neural tree[J]. J4, 2009, 44(11): 44 -47 .
[10] ZHANG Fang-guo. Elliptic curves in cryptography: past, present and future…[J]. J4, 2013, 48(05): 1 -13 .