JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (3): 81-88.doi: 10.6040/j.issn.1671-9352.1.2019.162
Previous Articles Next Articles
Ying YU*,Xin-nian WU(),Le-wei WANG,Ying-long ZHANG
CLC Number:
1 |
ZHANG Minlin , ZHOU Zhihua . A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (8): 1819- 1837.
doi: 10.1109/TKDE.2013.39 |
2 | TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions[C]//9th International Conference on Music Information Retrieval. Philadelphia Springer, 2008: 325-330. |
3 |
LIU S M , CHEN J H . A multi-label classification based approach for sentiment classification[J]. Expert Systems with Applications, 2015, 42 (3): 1083- 1093.
doi: 10.1016/j.eswa.2014.08.036 |
4 | HUANG Shu, PENG Wei, LI Jingxuan, et al. Sentiment and topic analysis on social media: a multi-task multi-label classification approach[C]//Proceedings of the 5th Annual ACM Web Science Conference. Paris: AC, 2013. |
5 |
WU Baoyuan , LYU S , HU Baogang , et al. Multi-label learning with missing labels for image annotation and facial action unit recognition[J]. Pattern Recognition, 2015, 48 (7): 2279- 2289.
doi: 10.1016/j.patcog.2015.01.022 |
6 |
QIN Jianzhao , YUNG N H C . Feature fusion within local region using localized maximum-margin learning for scene categorization[J]. Pattern Recognition, 2012, 45 (4): 1671- 1683.
doi: 10.1016/j.patcog.2011.09.027 |
7 |
BARUTCUOGLU Z , SCHAPIRE R E , TROYANSKAYA O G . Hierarchical multi-label prediction of gene function[J]. Bioinformatics, 2006, 22 (7): 830- 836.
doi: 10.1093/bioinformatics/btk048 |
8 | JIANG J Q , MCQUAY L J . Predicting protein function by multi-label correlated semi-supervised learning[J]. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2012, 9 (4): 1059- 1069. |
9 | SONG Yang, ZHANG Lu, GILES C L. A sparse gaussian processes classification framework for fast tag suggestions[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management. Napa Valley: ACM, 2008: 93-102. |
10 | OZONAT K M, YOUNG D. Towards a universal marketplace over the web: statistical multi-label classification of service provider forms with simulated annealing[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris: ACM, 2009: 1295-1304. |
11 | YAO Yiyu , DENG Xiaofei . Sequential three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180 (3): 341- 353. |
12 |
YU Ying , PEDRYCZ W , MIAO Duoqian . Multi-label classification by exploiting label correlations[J]. Expert Systems with Applications, 2014, 41 (6): 2989- 3004.
doi: 10.1016/j.eswa.2013.10.030 |
13 | 刘盾. 三支决策与粒计算[M]. 北京: 科学出版社, 2013. |
LIU Dun . Three decisions and granular computing[M]. Beijing: Science Press, 2013. | |
14 | YAO Yiyu. Granular computing and sequential three-way decisions[C]//RSKT 2013: Rough Sets and Knowledge Technology, Halifax: Springer, 2013: 16-27. |
15 | ZHENG Taoyu, ZHENG Zhiyun, TANG Shiping, et al. Query expansion for answer document retrieval in chinese question answering system[C]// International Conference on Machine Learning & Cybernetics. Guangzhou: Springer, 2005: 278-284. |
16 |
YAO Jingtao , LI Huaxiong , PETERS G . Decision-theoretic rough sets and beyond[J]. International Journal of Approximate Reasoning, 2014, 55 (1): 99- 100.
doi: 10.1016/j.ijar.2013.09.022 |
17 |
BOUTELL M , LUO Jiebo , SHEN Xipeng , et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37 (9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009 |
18 |
ZHANG Minling , ZHOU Zhihua . ML-KNN: A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40 (7): 2038- 2048.
doi: 10.1016/j.patcog.2006.12.019 |
19 | HUANG Jun, LI Guorong, HUANG Qingming, et al. Learning label specific features for multi-label classification[C]//IEEE International Conference on Data Mining. Barcelona: IEEE, 2016: 181-190. |
20 | KONG D G, DING C, HUANG H, et al. Multi-label ReliefF and F-statistic feature selections for image annotation[C]//Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2352-2359. |
21 | READ J , PFAHRINGER B , HOLMES G , et al. Classifier chains for multi-label classification[M]. Berlin: Springer, 2009: 254- 269. |
22 | READ J , PFAHRINGER B , HOLMES G , et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85 (3): 333- 359. |
23 | ZHANG Minlin, ZHANG Kun. Multi-label learning by exploiting label dependency[C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2010: 999-1008. |
24 | TSOUMAKAS G , KATAKIS I . Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, (3): 1- 13. |
25 |
CHEN Weijie , SHAO Yuanhai , LI Chunna , et al. MLTSVM: a novel twin support vector machine to multi-label learning[J]. Pattern Recognition, 2016, 52: 61- 74.
doi: 10.1016/j.patcog.2015.10.008 |
26 | PLATT J . Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[J]. Advances in Large Margin Classifiers, 1999, 10 (3): 61- 74. |
27 | ZHANG Minlin , ZHOU Zhihua . Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18 (10): 1338- 1351. |
28 | ELISSEEFF A , WESTON J . Kernel methods for multi-labelled classification and categorical regression problems[J]. Advances in Neural Information Processing Systems, 2002, 14: 681- 687. |
[1] | LIU Guo-tao, ZHANG Yan-ping, XU Chen-chu. Three-way decisions model based on the optimal center covering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 105-110. |
[2] | TIAN Hai-long, ZHU Yan-hui, LIANG Tao, MA Jin, LIU Jing. Research on identificating Chinese micro-blog opinion sentence based on three-way decisions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 58-65. |
[3] | ZHANG Cong, YU Hong. An incremental three-way decisions soft clustering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 40-47. |
[4] | DU Li-na, XU Jiu-cheng, LIU Yang-yang, SUN Lin. Research on the evaluation of venture investment based on the risk minimization of three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 66-72. |
[5] | ZHANG Li-bo, LI Hua-xiong, ZHOU Xian-zhong, HUANG Bing. Multi-granularity cost-sensitive three-way decision for face recognition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 48-57. |
[6] | FENG Xin-ying1,2, JI Hua1,2, ZHANG Hua-xiang1,2. Multi-label RBF neural networks learning algorithm based on clustering optimization [J]. J4, 2012, 47(5): 63-67. |