JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (1): 51-61.doi: 10.6040/j.issn.1671-9352.1.2019.167
Previous Articles Next Articles
ZHANG Hai-yang1, MA Zhou-ming1,2*, YU Pei-qiu1, LIN Meng-lei1, LI Jin-jin1
CLC Number:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356. [2] CHEN W. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents[J]. Bioelectrochemistry, 2004, 63(1):333-335. [3] LEUNG Y, FISCHER M M, WU W Z, et al. A rough set approach for the discovery of classification rules in interval-valued information systems[J]. International Journal of Approximate Reasoning, 2008, 47(2):233-246. [4] LIN Y, HU X, WU X. Quality of information-based source assessment and selection[J]. Neurocomputing, 2014, 133:95-102. [5] QIAN Y, ZHANG H, LI F, et al. Set-based granular computing: a lattice model[J]. International Journal of Approximate Reasoning, 2014, 55(3):834-852. [6] QIAN Y, ZHANG H, SANG Y, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(1):225-237. [7] WU W Z, LEUNG Y, SHAO M W. Generalized fuzzy rough approximation operators determined by fuzzy implicators[J]. International Journal of Approximate Reasoning, 2013, 54(9):1388-1409. [8] YAO Y. Probabilistic rough set approximations[J]. International Journal of Approximate Reasoning, 2008, 49(2):255-271. [9] MIN F, HU Q, ZHU W. Feature selection with test cost constraint[J]. International Journal of Approximate Reasoning, 2014, 55(1):167-179. [10] HU Q, SHUANG A, XIAO Y, et al. Robust fuzzy rough classifiers[J]. Fuzzy Sets & Systems, 2011, 183(1):26-43. [11] LIU D, LI T, LIANG D. Incorporating logistic regression to decision-theoretic rough sets for classifications[J]. International Journal of Approximate Reasoning, 2014, 55(1):197-210. [12] LUO C, LI T, CHEN H. Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization[J]. Information Sciences, 2014, 257:210-228. [13] SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters, 2003, 24(6):833-849. [14] ZHU P, HU Q. Rule extraction from support vector machines based on consistent region covering reduction[J]. Knowledge-Based Systems, 2013, 42(2):1-8. [15] PAWLAK Z, SKOWRON A. Rough sets: some extensions[J]. Information Sciences, 2007, 177(1):28-40. [16] 李进金, 谭安辉, 石素玮. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(8):86-91. LI Jinjin, TAN Anhui, SHI Suwei. Fuzzy roughness and rough entropy of a class of models covering intuitionistic fuzzy sets[J]. Journal of Shandong University(Natural Science), 2014, 49(8):86-91. [17] KATZBERG J D, ZIARKO W. Variable precision rough sets with asymmetric bounds[M] // Rough Sets, Fuzzy Sets and Knowledge Discovery. London: Springer, 1994: 167-177. [18] YAO Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3):341-353. [19] WU W Z, MI J S, ZHANG W X. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151(3):263-282. [20] ZHAO S, TSANG E C C, CHEN D. The model of fuzzy variable recision rough sets[J]. IEEE Transanctions on Fuzzy System, 2009, 17(2):451-467. [21] QIAN Y, LIANG J, YAO Y, et al. MGRS: a multi-granulation rough set ☆[J]. Information Sciences An International Journal, 2010, 180(6):949-970. [22] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation: an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174(9/10):597-618. [23] LIN G, QIAN Y, LI J. NMGRS: neighborhood-based multigranulation rough sets[J]. International Journal of Approximate Reasoning, 2012, 53(7):1080-1093. [24] FENG T, MI J S. Variable precision multigranulation decision-theoretic fuzzy rough sets[J]. Knowledge-Based Systems, 2016, 91:93-101. [25] 胡谦, 米据生, 李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017,52(7):30-36. HU Qian, MI Jusheng, LI Leijun. Trust structure and attribute reduction of multi-granularity fuzzy rough approximation operator[J]. Journal of Shandong University(Natural Science), 2017, 52(7):30-36. [26] HU C, LIU S, LIU G. Matrix-based approaches for dynamic updating approximations in multigranulation rough sets[J]. Knowledge-Based Systems, 2017, 122:51-63. [27] JU H, YANG X, SONG X, et al. Dynamic updating multigranulation fuzzy rough set: approximations and reducts[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(6):981-990. [28] 陈红梅. 粗糙集中基于粒计算的动态知识更新方法研究[D]. 成都:西南交通大学, 2013. CHEN Hongmei. Research on dynamic knowledge updating method based on grain computation in rough set [D]. Chengdu: Southwest Jiaotong University, 2013. [29] 刘财辉, 苗夺谦. 基于矩阵的粗糙集上、下近似求解算法[J]. 计算机应用研究, 2011, 28(5):1628-1630. LIU Caihui, MIAO Duoqian. Rough set approximation algorithm based on matrix[J]. Computer Application Research, 2011, 28(5):1628-1630. [30] YANG X, QI Y, YU H, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-Based Systems, 2014, 64:59-69. [31] HU C, LIU S, HUANG X. Dynamic updating approximations in multigranulation rough sets while refining or coarsening attribute values[J]. Knowledge-Based Systems, 2017, 130(15):62-73. [32] 胡成祥, 赵国柱. 优势关系多粒度粗糙集中近似集动态更新方法[J]. 中国科学技术大学学报, 2017(1):43-50. HU Chengxiang, ZHAO Guozhu. Multi-granularity rough set approximation set dynamic update method[J]. Journal of University of Science and Technology of China, 2017(1):40-47. [33] ZHANG J, LI T, RUAN D, et al. Neighborhood rough sets for dynamic data mining[J]. International Journal of Intelligent Systems, 2012, 27(4):317-342. |
[1] | WANG Xiao-yan, SHEN Jia-lan, SHEN Yuan-xia. Graded multi-granulation rough set based on weighting granulations and dominance relation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 97-104. |
|