JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (01): 1-11.doi: 10.6040/j.issn.1671-9352.2.2014.424

    Next Articles

A multi-dimensional evidence dynamic trust computing model based on multi-agent

JIANG Wei-jin1,2, XU Yu-hui3, GUO Hong4, XU Yu-sheng4   

  1. 1. School of Computer and Information Engineering, Hunan University of Commerce, Changsha 410205, Hunan, China;
    2. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    3. School of Design Art, Hunan University of Commerce, Changsha 410205, Hunan, China;
    4. North Navigation Control Technology Co., Ltd., Beijing 100176, China
  • Received:2014-06-24 Revised:2014-10-17 Online:2015-01-20 Published:2015-01-24

Abstract: The trust assessment is the core content of the trust management model based on the behavior. In order to complete the evidence sources of the trust assessment, a trust assessment model based on multi-dimensional evidence was proposed by using the trust management thinking. And this model introduces information on operating behaviors level of the main network into the traditional trust assessment model which only considerates feedback information of transaction, and computes trust based on multi-dimensional evidence sources on feedback information of transaction and network operating behaviors level, and extends the evidence source, and overcomes the defect when trust is assessed only according to a single type of evidence source. In addition, the application of the improved DS evidence to synthesize multi-dimensional evidences can solve the problem of uncertainty of evidences.

Key words: trust assessment, trust management, dynamic trusted computing, evidence multidimensional

CLC Number: 

  • TP9393
[1] BLAZE M, FEIGENBAUM J, LACY J. Decentralized trust management[C]// Proceedings of the 17th Symposium on Security and Privacy. Los Alamitos: IEEE Computer Society, 1996: 64-173.
[2] ABDUL-RAHMAN A, HAILES S. A distributed trust model[C]// Proceedings of 1997 New Security Paradigms Workshop. Cumbria: ACM, 1998: 48-60.
[3] POVEY D. Developing electronic trust policies using a risk management model[C]// Proceedings of 1999 CQRE Congress. Berlin: Springer-Verlag, 1999: 1-16.
[4] WINSBOROUGH W H, SEAMONS K E, JONES V E. Automated trust negotiation[C]// Proceedings of the DARPA Information Survivability Conference and Exposition(DISCEX'00). Los Alamitos: IEEE Computer Society, 1999: 88-102.
[5] DEMPSTER A. Upper and lowe probabilities induced by multi-valued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2):325-339.
[6] SHAFER G. A mathematical theory of evidence[M]. Princeton, NJ: Princeton University Press, 1976.
[7] DEMPSTER A P. A generalization of bayesian inference[J]. Journal of the Royal Statistical Society, 1968, 30:205-245.
[8] SINCLAIRE J K, SIMON J C, WILKES R B, et al. A prediction model for initial trust formation in electronic commerce[J]. International Business Research, 2010, 3(4):17-27.
[9] 杨风暴, 王肖霞. D-S证据理论的冲突证据合成方法[M]. 北京: 国防工业出版社, 2010: 2-3. YANG Fengbao, WANG Xiaoxia. The conflict evidence combination method of D-S evidence theory[M]. Beijing: National Defense Industry Press, 2010: 2-3.
[10] SMETS P. The combination of evidence in the transferable belie model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5):447-458.
[11] YAGER R R. On the dempster-shafer framework and new combination rules[J]. IEEE Transactions on System, 1989, 41(2):93-137.
[12] LEFEVRE E, COLOT O, VANNOORENBERGHE P, et al. A generic framework for resolving the conflict in the combination of belief structures[C]// Proceedings of the 3rd International Conference on Information Fusion. Sunnyvale: Int Soc Inf Fusion, 2000: 182-188.
[13] MURPHY C K. Combining belief function when evidence conflicts[J]. Decision System, 2000, 29(1):1-9.
[14] YAGHOUBI N. Trust models in e-business: analytical-compare approach[J]. Interdisciplinary Journal of Contemporary Research in Business, 2011, 2(9):398-416.
[15] JIANG Weijin, ZHONG Luo, JI Jie,et al. Research on the trust in supply chain dynamic collaboration based on MAS[J]. Advanced Materials research Vols, 2011:282-283:470-473.
[16] JIANG Weijin, ZHANG Lianmei, WANG Pu. Research on grid resource scheduling algorithm based on MAS coop-erative bidding game[J]. Chinese Science F, 2009, 52(8):1302-1320.
[17] 蒋伟进, 张莲梅, 王璞. 基于MAS协作机制的动态计算资源优化调度模型[J]. 中国科学F辑:信息科学, 2009, 39(9):977-989. JIANG Weijin, ZHANG Lianmei, WANG Pu. Optimization scheduling model of dynamic calculate resource based on MAS cooperation mechanism[J]. Science in China, Series F:Information Sciences, 2009, 39(9):977-989.
[18] 蒋伟进, 钟珞, 张莲梅, 等. 基于时序活动逻辑的复杂系统多Agent动态协作模型[J]. 计算机学报, 2013, 36(5):115-1124. JIANG Weijin, ZHONG Luo, ZHANG Lianmei, et al. Dynamic cooperative multi-agent model of complex system based-on sequential actions' Logic[J]. Chinese Journal of Computers, 2013, 36(5):115-1124.
[19] 蒋伟进. 动态信任多量化建模与方法研究[M]. 北京: 科学出版社, 2014. JIANG Weijin. Research on modeling and method of dynamic trust quantitative[M]. Beijing: Science Press, 2014.
[20] 陈浩, 孙建华, 刘琛, 等. 一种轻量级安全可信的虚拟执行环境[J]. 中国科学: 信息科学, 2012,42(5):617-633. CHEN Hao, SUN Jianhua, LIU Chen, et al. A light-weight, secure and trusted virtual execution environment[J]. Scientia Sinica: Informationis, 2012, 42(5):617-633.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!