JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (1): 67-75.doi: 10.6040/j.issn.1671-9352.2.2021.139
LIANG Yun1, MEN Chang-qian1, WANG Wen-jian2*
CLC Number:
[1] HAN J W, PEI J, KAMBER M. Data mining, concepts and techniques[M]. Amsterdam: Elsevier, 2011. [2] QUINLAN J R. C4.5:programs for machine learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993. [3] FRIEDMAN J H, OLSHEN R A, STONE C J, et al. Classification and regression trees[M]. Florida: CRC Press, 1984. [4] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[C] //Proceedings of the Second European Conference on Computational Learning Theory. Berlin:Springer-Verlag, 1995: 23-37. [5] FREIEDMAN J H. Greedy function approximation: a gradientboosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. [6] CHEN T Q, GUESTRIN C. Xgboost: a scalable tree boosting system[C] //Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016: 785-794. [7] KE G L, MENG Q, FINLEY T, et al.LightGBM: a highly efficient gradient boosting decision tree[C] //31st Conference on Neural Information Processing Systems. Long Beach:NIPS, 2017:3146-3154. [8] ZHOU Z H, JI F. Deep forest: towards an alternative to deep neural networks[C] //Twenty-sixth International Joint Conference on Artificial Intelligence. Sweden: IJCAI, 2017: 3553-3559. [9] JIN X B, HOU X W, LIU C L. Multi-class AdaBoost with hypothesis margin[C] //2010 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 65-68. [10] CAO J J, KWONG S, WANG R. A noise-detection based AdaBoost algorithm for mislabeled data[J]. Pattern Recognition, 2012, 45(12): 4451-4465. [11] YAO X, WANG X D, ZHANG Y X, et al. A self-adaption ensemble algorithm based on random subspace and AdaBoost[J].Acta Electronica Sinica, 2013, 41(4): 810-814. [12] SUN B, CHEN S, WANG J D, et al. A robust multi-class AdaBoost algorithm for mislabeled noisy data[J]. Knowledge-based Systems, 2016, 102: 87-102. [13] WU R L, WANG L M, HU T Y. AdaBoost-SVM for electrical theft detection and GRNN for stealing time periods identification[C] //IECON 2018: 44th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2018: 3073-3078. [14] SUN J, LI HUA, FUJITA H, et al. Class-imbalanced dynamic financial distress prediction based on AdaBoost-SVM ensemble combined with SMOTE and time weighting[J]. Information Fusion, 2020, 54: 128-144. [15] LI K W, XIE P, ZHAI J N, et al. An improved AdaBoost algorithm for imbalanced data based on weighted KNN[C] //2017 IEEE 2nd International Conference on Big Data Analysis(ICBDA). Piscataway: IEEE, 2017: 30-34. [16] YANG S, CHEN L F, YAN T, et al. An ensemble classification algorithm for convolutional neural network based on AdaBoost[C] //2017 IEEE/ACIS 16th International Conference on Computer and Information Science(ICIS). Piscataway: IEEE, 2017: 401-406. [17] PUTRA M A, SETIAWAN N A, WIBIRAMA S, et al. Wart treatment method selection using AdaBoost with random forests as a weak learner[J]. Communications in Science and Technology, 2018, 3(2): 52-56. [18] 尹儒,门昌骞,王文剑. 模型决策树:一种决策树加速算法[J]. 模式识别与人工智能, 2018, 31(7): 643-652. YIN Ru, MEN Changqian, WANG Wenjian. Model decision tree:an accelerated algorithm of decision tree[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(7):643-652. [19] SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods[J]. The Annals of Statistics, 1998, 26(5):1651-1686. [20] BREIMAN L. Prediction games and arcing algorithms[J]. Neural Computation, 1999, 11(7):1493-1517. [21] GAO W, ZHOU Z H. On the doubt about margin explanation of boosting[J]. Artificial Intelligence, 2013, 203(10):1-18. |
[1] | Xiang-wen LIAO,Yang XU,Jing-jing WEI,Ding-da YANG,Guo-long CHEN. Review spam detection based on the two-level stacking classification model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 57-67. |
[2] | MA Li-fei, MO Qian, DU Hui. Research on classification for Chinese short film reviews [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 52-57. |
[3] | ZHANG Wen, ZHANG Hua-xiang*, LI Ming-fang, JI Hua. A decision tree construction approach: two-step forward is better than one [J]. J4, 2010, 45(7): 114-118. |
[4] | CHEN Lei. Some notes on the communication process decision tree [J]. J4, 2009, 44(1): 33-39 . |
[5] | CHEN Lei . On para-communication and pan-communication (Ⅱ) [J]. J4, 2008, 43(5): 32-38 . |
[6] | HE Ai-xiang,ZHANG Yong . Classification rules for mining tumors and normal tissues using genetic algorithms and decision trees [J]. J4, 2007, 42(9): 91-95 . |
[7] | QI Cheng-ming,HAO Ling,CUI Shou-mei . A new fuzzy decision tree model and its application [J]. J4, 2007, 42(11): 107-109 . |
|