JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (11): 8-13.doi: 10.6040/j.issn.1671-9352.3.2014.051

Previous Articles     Next Articles

Micro-blog orientation analysis based on emotion symbol

LIU Pei-yu1,2,3, ZHANG Yan-hui2,3, ZHU Zhen-fang4, XUN Jing2,3   

  1. 1. School of Information Engineering, Shandong Yingcai University, Jinan 250104, Shandong, China;
    2. School of Information Science & Engineering, Shandong Normal University, Jinan 250014, Shandong, China;
    3. Shandong Provincial Key Laboratory for Normal Distributed Computer Software Technology, Jinan 250014 Shandong, China;
    4. School of Information Science & Electrical Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China
  • Received:2014-08-28 Revised:2014-10-21 Online:2014-11-20 Published:2014-11-25

Abstract: At present, the researches of Micro-blog orientation analysis mainly concentrate in the text, without considering the impact of other emotional factors. By analyzing and studying Sina Micro-blog, new words and emoticons dictionary were added into special Micro-blog dictionary with traditional emotional dictionary. Meanwhile, rhetoric and sentence were analyzed in this paper to improve the effect of orientation analysis. The experimental results showed that the method can obtaine better performance in Micro-blog orientation analysis.

Key words: orientation analysis, Micro-blog, emotion symbol

CLC Number: 

  • TP391
[1] HATZIVASSILOGLOU V, MCKEOWN K R. Predicting the semantic orientation of adjectives[C]// Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics. Somerset: ACL, 1997: 174-181.
[2] YI J, NASUKAWA T, BUNESCU R, et al. Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques[C]// Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003). Los Alamitos: IEEE Computer Society, 2003: 427-434.
[3] 吴江,唐常杰,李太勇,等. 基于语义规则的Web金融文本情感分析[J]. 计算机应用,2014,34(2):481-485. WU Jiang, TANG Changjie, LI Taiyong, et al. Sentiment analysis on Web financial text based on semantic rules[J]. Journal of Computer Applications, 2014, 34(2):481-485.
[4] PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]// Proceedings of 2002 Conference on Empirical Methods in Natural Language Processing. Somerset: ACL, 2002: 79-86.
[5] LI Fangtao, LIU Nathan, JIN Hongwei, et al. Incorporating reviewer and product information for review rating prediction[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2011: 1820-1825.
[6] 徐军,丁宇新,王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报,2007,21(6):95-100. XU Jun, DING Yuxin, WANG Xiaolong. Sentiment classification for chinese news using machine learning methods[J]. Journal of Chinese Information Processing, 2007, 21(6):95-100.
[7] ABBASI A, FRANCE S, ZHANG Zhu, et al. Selecting attributes for sentiment classification using feature relation networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(3):447-462.
[8] 李寿山,黄居仁. 基于 Stacking 组合分类方法的中文情感分类研究[J]. 中文信息学报,2010, 24(5):56-61. LI Shoushan, HUANG Juren. Chinese sentiment classification based on stacking combination method[J]. Journal of Chinese Information processing, 2010, 24(005):56-61.
[9] ZHAI Z, XU H, KANG B, et al. Exploiting effective features for Chinese sentiment classification[J]. Expert Systems with Applications, 2011, 38(8):9139-9146.
[10] GO A, BHAYANI R, HUANG Lei. Twitter sentiment classification using distant supervision[D]. Stanford: Stanford University, 2009: 1-12.
[11] JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent Twitter sentiment classification[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Somerset: ACL, 2011: 151-160.
[12] DAVIDOV D, TSUR O, RAPPOPORT A. Enhanced sentiment learning using Twitter hashtags and smileys[C]// Proceedings of the 23rd International Conference on Computational Linguistics. Beijing: Tsinghua University Press, 2010: 241-249.
[13] KOULOUMPIS E, WILSON T, MOORE J. Twitter sentiment analysis: the good the bad and the omg! [C]// Proceedigns of ICWSM.[S.l.]: AAAI Press, 2011, 11: 538-541.
[14] 张珊,于留宝,胡长军. 基于表情图片与情感词的中文微博情感分析[J]. 计算机科学,2012,39(3):146-148. ZHANG Shan, YU Liubao, HU Changjun. Sentiment analysis of Chinese micro-blogs based on emoticons and emotional words[J]. Computer Science, 2012, 39(3):146-148.
[15] 吴迪. 汉语微博文本特征研究[D]. 长春:吉林大学,2012. WU Di. Research on text features of micro-blogging in Chinese[D]. Changchun: Jilin University, 2012.
[16] 丁建立,慈祥,黄剑雄. 网络评论倾向性分析[J]. 计算机应用,2010(11):2937-2940. DING Jianli, CI Xiang, HUANG Jianxiong. Orientation analysis of Web review[J]. Journal of Computer Applications, 2010(11):2937-2940.
[17] 唐慧丰,谭松波,程学旗. 基于监督学习的中文情感分类技术比较研究[J]. 中文信息学报,2007,21(6):88-94. TANG Huifeng, TAN Songbo, CHENG Xueqi. Research on sentiment classification of chinese reviews based on supervised machine learning techniques[J]. Journal of Chinese Information Processing, 2007, 21(6):88-94.
[1] ZHANG Zhong-jun, ZHANG Wen-juan, YU Lai-hang, LI Run-chuan. A community division method based on network distance and content similarity in micro-blog social network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 97-103.
[2] ZHANG Ke-liang, HUANG Jin-zhu, CAO Rong, LI Feng. Text sentimental orientation analysis based on HNC contextual framework and sentimental dictionaries [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 51-58.
[3] HU Mo-zhi, YAO Tian-fang. Recognition of Chinese Micro-blog sentiment polarity and extraction of opinion target [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 81-89.
[4] SUN He, LI Shu-qin, L(¨overU)Xue-qiang, LIU Ke-hui. Recognition of geographical entity in city complaints of Micro-blog [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 77-85.
[5] HE Yan-xiang, LIU Jian-bo, SUN Song-tao, WEN Wei-dong. Product reviews sentiment classification in Micro-blog based on cascaded conditional random field [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 67-73.
[6] WANG Li-ren, YU Zheng-tao, WANG Yan-bing, GAO Sheng-xiang, LI Xian-hui. Micro-blogging topic mining based on supervised LDA user interest model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 36-41.
[7] ZAN Hong-ying, WU Yong-gang, JIA Yu-xiang, NIU Gui-ling. Chinese Micro-blog named entity linking based on multisource knowledge [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(07): 9-16.
[8] TANG Bo, CHEN Guang, WANG Xing-ya, WANG Fei, CHEN Xiao-hui. Analysis on new word detection and sentiment orientation in Micro-blog [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(01): 20-25.
[9] KUANG Chong, LIU Zhi-yuan, SUN Mao-song. Personalized ranking of Micro-blogging forwarders [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 31-36.
[10] YANG Jia-neng, YANG Ai-min, ZHOU Yong-mei. Sentiment classification method of Chinese Micro-blog based on semantic analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 14-21.
[11] SUN Song-tao, HE Yan-xiang, CAI Rui, LI Fei, HE Fei-yan. Comparative study of methods for Micro-blog sentiment evaluation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 43-50.
[12] TIAN Hai-long, ZHU Yan-hui, LIANG Tao, MA Jin, LIU Jing. Research on identificating Chinese micro-blog opinion sentence based on three-way decisions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 58-65.
[13] ZHENG Jian-xing, ZHANG Bo-feng*, YUE Xiao-dong, CHENG Ze-yu. Research on themes recommendation in microblogging
scenario based on neighbor-user profile
[J]. J4, 2013, 48(11): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!