JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 91-107.doi: 10.6040/j.issn.1671-9352.4.2022.7001

Previous Articles     Next Articles

Conflict analyses and deciosion analyses based on probabilistic multi-valued information systems

Lei JIN1(),Tao FENG1,*(),Shaopu ZHANG2   

  1. 1. School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
    2. Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China
  • Received:2022-07-26 Online:2023-12-20 Published:2023-12-19
  • Contact: Tao FENG E-mail:jinlei_97@163.com;fengtao_new@163.com

Abstract:

A probabilistic multi-valued information system is proposed by adding a probability measure to the multi-valued information system. In addition, in a probabilistic multi-valued information system, the degree of conflict between agents is defined by Bregman divergence, and the alliance class, neutral class and conflict class of each agent are obtained. Finally, a method for obtaining feasible decision sets in probabilistic multi-valued information systems is proposed based on the mean value and standard deviation of the evaluation results.

Key words: conflict analysis, probabilistic multi-valued information system, information extraction

CLC Number: 

  • O225

Table 1

A probabilistic multi-valued information system"

A $ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 -0.5/0.3 0.7/0.8 0.4/0.5 0.1/0.24 -0.8/0.4 0.3/0.4 0.4/1.0
-0.2/0.6 -0.1/0.2 -0.7/0.4 -0.3/0.06 -0.5/0.5 -0.7/0.3
0.4/0.1 -0.1/0.1 0.25/0.48 1.0/0.1 -1.0/0.3
-0.15/0.12
0.55/0.08
0.15/0.02
a2 0.2/0.8 0.8/0.3 0.7/1.0 0.5/0.24 -0.8/0.7 0.9/1.0 0.7/0.3
-0.1/0.2 -1.0/0.7 -0.4/0.56 0.1/0.3 0.4/0.7
0.35/0.06
-0.55/0.14
a3 0.9/1.0 0.6/1.0 -0.7/0.6 0.75/1.0 -0.7/0.7 -0.8/1.0 1.0/1.0
0.4/0.4 -0.9/0.3
a4 1.0/1.0 0.8/1.0 -0.3/1.0 0.9/1.0 -0.9/1.0 -0.4/1.0 0.6/1.0

Table 2

Value table of EB(a)"

A $ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 -0.23 0.54 -0.09 0.155 -0.47 -0.39 0.40
a2 0.14 -0.46 0.70 -0.160 -0.53 0.90 0.49
a3 0.90 0.60 -0.26 0.750 -0.76 -0.80 1.00
a4 1.00 0.80 -0.30 0.900 -0.90 -0.40 0.60

Table 3

Value table of Ci1(a, b)"

A A
a1 a2 a3 a4
a1 0.000 0 0.037 6 0.309 3 0.375 0
a2 0.037 6 0.000 0 0.144 8 0.190 8
a3 0.309 3 0.144 8 0.000 0 0.003 2
a4 0.375 0 0.190 8 0.003 2 0.000 0

Table 4

Value table of Ci2(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.313 2 0.012 8 0.029 6
a2 0.313 2 0.000 0 0.330 5 0.445 2
a3 0.012 8 0.330 5 0.000 0 0.010 7
a4 0.029 6 0.445 2 0.010 7 0.000 0

Table 5

Value table of Ci3(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.172 2 0.068 1 0.039 2
a2 0.172 2 0.000 0 0.240 9 0.226 2
a3 0.068 1 0.240 9 0.000 0 0.032 6
a4 0.039 2 0.226 2 0.032 6 0.000 0

Table 6

Value table of Ci1, i2(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.044 5 0.088 8 0.1425
a2 0.044 5 0.000 0 0.209 1 0.286 6
a3 0.088 8 0.209 1 0.000 0 0.006 5
a4 0.142 5 0.286 6 0.006 5 0.000 0

Table 7

Value table of Ci1, i3(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.050 8 0.052 6 0.079 2
a2 0.050 8 0.000 0 0.034 9 0.057 1
a3 0.052 6 0.034 9 0.000 0 0.006 9
a4 0.079 2 0.057 1 0.006 9 0.000 0

Table 8

Value table of Ci2, i3(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.429 9 0.081 0 0.038 4
a2 0.429 9 0.000 0 0.692 4 0.397 5
a3 0.081 0 0.692 4 0.000 0 0.040 6
a4 0.038 4 0.397 5 0.040 6 0.000 0

Table 9

Value table of Ci1, i2, i3(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.004 2 0.097 6 0.009 6
a2 0.004 2 0.000 0 0.074 5 0.005 3
a3 0.097 6 0.074 5 0.000 0 0.004 6
a4 0.009 6 0.005 3 0.004 6 0.000 0

Table 10

Table of allianceclassALβα(a, B)"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 {a1, a2} {a1, a3, a4} {a1, a3, a4} {a1, a2, a3} {a1, a2, a3, a4} {a1, a3, a4} {a1, a2, a3, a4}
a2 {a1, a2} {a2} {a2} {a1, a2} {a1, a2, a3, a4} {a2} {a1, a2, a3, a4}
a3 {a3, a4} {a1, a3, a4} {a1, a3, a4} {a1, a3, a4} {a1, a2, a3, a4} {a1, a3, a4} {a1, a2, a3, a4}
a4 {a3, a4} {a1, a3, a4} {a1, a3, a4} {a3, a4} {a1, a2, a3, a4} {a1, a3, a4} {a1, a2, a3, a4}

Table 11

Table of neutralclass NEβα(a, B)"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 $ \emptyset $ $ \emptyset $ {a2} {a4} $ \emptyset $ $ \emptyset $ $ \emptyset $
a2 {a3, a4} $ \emptyset $ {a1, a3, a4} {a3, a4} $ \emptyset $ $ \emptyset $ $ \emptyset $
a3 {a2} $ \emptyset $ {a2} {a2} $ \emptyset $ $ \emptyset $ $ \emptyset $
a4 {a2} $ \emptyset $ {a2} {a1, a2} $ \emptyset $ $ \emptyset $ $ \emptyset $

Table 12

Table ofconflictclass COβα(a, B)"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 {a3, a4} {a2} $ \emptyset $ $ \emptyset $ $ \emptyset $ {a2} $ \emptyset $
a2 $ \emptyset $ {a1, a3, a4} $ \emptyset $ $ \emptyset $ $ \emptyset $ {a1, a3, a4} $ \emptyset $
a3 {a1} {a2} $ \emptyset $ $ \emptyset $ $ \emptyset $ {a2} $ \emptyset $
a4 {a1} {a2} $ \emptyset $ $ \emptyset $ $ \emptyset $ {a2} $ \emptyset $

Table 13

Value table of CJ(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.260 3 0.134 4 0.147 7
a2 0.260 3 0.000 0 0.389 2 0.344 5
a3 0.134 4 0.389 2 0.000 0 0.018 2
a4 0.147 7 0.344 5 0.018 2 0.000 0

Table 14

Value table of $ C_{\mathscr{P}(I)}$(a, b)"

AA
a1 a2 a3 a4
a1 0.000 0 0.150 3 0.101 4 0.101 9
a2 0.150 3 0.000 0 0.246 7 0.229 8
a3 0.101 4 0.246 7 0.000 0 0.020 9
a4 0.101 9 0.229 8 0.020 9 0.000 0

Table 15

Value table of E′B(a)"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 0.437 630 0.385 804 0.000 470 0.411 717 -0.661 354 -0.192 905 0.618 090
a2 0.412 889 0..316 305 0.058 290 0.364 597 -0.650 733 -0.101 409 0.606 339
a3 0.489 651 0..419 174 -0.029 553 0.454 412 -0.678 269 -0.237 990 0.637 849
a4 0.489 651 0.419 174 -0.029 553 0.454 412 -0.678 269 -0.237 990 0.637 849
A 0.457 217 0.384 377 0.000 704 0.420 797 -0.667 192 -0.190 676 0.624 295

Table 16

Value table of σB(a)"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 0.249 199 0.320 000 0.518 556 0.202 793 0.510 000 0.575 239 0.000 000
a2 0.120 000 0.824 864 0.000 000 0.416 773 0.412 432 0.000 000 0.137 477
a3 0.000 000 0.000 000 0.538 888 0.000 000 0.091 652 0.000 000 0.000 000
a4 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000

Table 17

Value table of σ′B(a)"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 0.096 306 0.279 970 0.275 014 0.152 733 0.258 559 0.157 761 0.032 028
a2 0.098 346 0..325 144 0.250 962 0.174 638 0.271 201 0.144 896 0.040 748
a3 0.086 565 0..250 319 0.276 744 0.136 650 0.237 017 0.142 356 0.028 515
a4 0.086 698 0.252 974 0.272 340 0.137 940 0.237 268 0.141 637 0.029 024
A 0.091 979 0.277 102 0.268 765 0.150 490 0.251 011 0.146 663 0.032 579

Table 18

A probabilistic multi-valued information system"

A$ \mathscr{P}(I)$
i1 i2 i3 i1, i2 i1, i3 i2, i3 i1, i2, i3
a1 0.7/1.0 -0.9/1.0 -0.7/1.0 -0.8/1.0 0.4/1.0 -0.8/1.0 0.2/1.0
a2 0.15/0.8 -0.9/0.7 0.7/1.0 0.5/0.4 -0.15/0.4 -0.1/0.7 0.45/0.7
-0.8/0.2 0.1/0.2 -0.35/0.3 0.3/0.4 0.4/0.2 0.75/0.3
0.3/0.1 0.1/0.3 -0.4/0.2 0.5/0.1
a3 -0.95/1.0 0.5/1.0 -0.7/0.6 0.85/1.0 -0.9/0.8 -0.1/0.6 -0.8/1.0
0.4/0.4 -0.3/0.2 0.45/0.4
a4 1.0/1.0 -0.8/0.7 -0.3/1.0 0.7/1.0 0.95/1.0 -0.55/0.7 -0.9/1.0
-1.0/0.3 -0.65/0.3
a5 0.8/0.6 0.7/0.5 -1.0/0.7 -0.3/0.3 0.6/0.5 -0.15/0.35 1.0/0.8
0.5/0.3 0.3/0.5 -0.7/0.3 -0.6/0.3 0.4/0.5 0.0/0.15 0.75/0.2
-0.2/0.1 0.2/0.3 -0.35/0.35
-0.2/0.15
a6 0.15/1.0 0.9/1.0 0.6/0.5 -0.9/1.0 0.4/1.0 0.75/0.5 0.8/0.9
0.9/0.5 0.9/0.5 -1.0/0.1
a7 0.45/1.0 0.6/1.0 0.8/0.6 -1.0/1.0 1.0/1.0 0.7/0.6 0.3/1.0
-0.3/0.4 0.15/0.4
a8 -1.0/1.0 0.4/1.0 -0.3/1.0 0.8/1.0 -0.9/1.0 0.05/1.0 0.55/1.0
a9 -0.2/1.0 -1.0/1.0 0.9/1.0 -0.1/1.0 0.3/1.0 -0.05/1.0 -0.75/1.0
a10 -0.65/1.0 0.95/1.0 0.75/1.0 0.85/1.0 0.6/1.0 0.85/1.0 0.95/1.0

Fig.1

Curves of the change of |ALβα(A, $ \mathscr{P}(I)$)| with β under different conflict degree definitions"

Fig.2

Curves of the change of |COβα(A, $ \mathscr{P}(I)$)| with α under different conflict degree definitions"

Table 19

Comparison of the existing conflict analysis papers"

来源 信息系统 二元关系 决策选择 主要工作
Pawlak[1-3] 三值信息系统 × 在三值信息系统中建立了冲突分析的基本框架
Liu[8] 直觉模糊信息系统 × 在直觉模糊信息系统中给出了一种冲突度的定义,并以此确定了各代理的冲突类、中立类和联合类
Lang[12] 动态三值信息系统 × 在动态三值信息系统中给出一种冲突度定义,并将冲突分析与决策理论粗糙集相结合,给出三支冲突分析模型
Sun[9] 三值信息系统 × 针对冲突问题的解决首次给出了方案(仅选择代理集“支持”和“反对”的问题)
Sun[10] 三值信息系统 × 结合决策理论粗糙集给出了一种冲突问题的解决思路,将代理集支持的问题集和反对的问题集作为可以实行的策略集合,解决冲突问题(仅选择代理集“支持”和“反对”的问题)
Lang[5] 毕达哥拉斯模糊信息系统 × 在毕达哥拉斯模糊信息系统中给出冲突度的定义,并结合多属性群决策的方法给出了一种毕达哥拉斯模糊信息系统中的冲突分析模型
Lang[13] 三值信息系统 × 将粗糙集理论和形式概念分析下冲突问题的决策选择模型进行了统一(仅选择代理集“支持”的问题)
Yi[7] 犹豫模糊信息系统 × 在犹豫模糊信息系统中给出一种冲突度的定义,并对冲突问题产生的原因进行讨论
Suo[15] 不完备的三值信息系统;不完备的多值信息系统 × 分别在不完备的三值信息系统和多值信息系统中给出2种冲突度的定义,并以此确定各代理的冲突类、中立类和联合类
Lang[14] 三值信息系统;多值信息系统 × 使用标准化的曼哈顿距离作为Pawlak和Yao的定义的冲突度的推广,给出冲突度和联合度2个度量的公理化定义
Xu[23] 三值信息系统;模糊信息系统 × 定义了代理集的一致性度量,并以此进行决策选择(代理集“支持”、“中立”和“反对”的问题都可以被选出)
Li[6] 三角模糊信息系统 × 在三角模糊信息系统中定义冲突度
Du[17] 毕达哥拉斯模糊信息系统 在毕达哥拉斯模糊信息系统上定义2种全新的冲突度;在问题集上定义冲突度,并使用其给出一种决策选择模型(代理集“支持”、“中立”和“反对”的问题都可以被选出
本文 概率多值信息系统 提出了概率多值信息系统,在概率多值信息系统上定义冲突度,根据评价结果的均值、标准差及平均冲突度进行了决策选择(仅选择代理集“支持”的问题)
1 PAWLAK Z . On conflicts[J]. International Journal of Man-Machine Studies, 1984, 21 (2): 127- 134.
doi: 10.1016/S0020-7373(84)80062-0
2 PAWLAK Z . An inquiry into anatomy of conflicts[J]. Information Sciences, 1998, 109 (1/2/3/4): 65- 78.
3 PAWLAK Z . Some remarks on conflict analysis[J]. European Journal of Operational Research, 2005, 166 (3): 649- 654.
doi: 10.1016/j.ejor.2003.09.038
4 YAO Yiyu . Three-way conflict analysis: reformulations and extensions of the Pawlak model[J]. Knowledge-Based Systems, 2019, 180, 26- 37.
doi: 10.1016/j.knosys.2019.05.016
5 LANG G M , MIAO D Q , FUJITA H . Three-way group conflict analysis based on Pythagorean fuzzy set theory[J]. IEEE Transactions on Fuzzy Systems, 2019, 28 (3): 447- 461.
6 LI Xiaonan , WANG Xuan , LANG Guangming , et al. Conflict analysis based on three-way decision for triangular fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 132, 88- 106.
doi: 10.1016/j.ijar.2020.12.004
7 YI Huangjian , ZHANG Huimin , LI Xiaonan , et al. Three-way conflict analysis based on hesitant fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 139, 12- 27.
doi: 10.1016/j.ijar.2021.09.002
8 LIU Yong , LIN Yi , LIU Jian . Conflict analysis model and application based on intuitionistic fuzzy number[J]. Kybernetes, 2014, 43 (7): 1040- 1052.
doi: 10.1108/K-11-2012-0102
9 SUN Bingzhen , MA Weiming , ZHAO Haiyan . Rough set-based conflict analysis model and method over two universes[J]. Information Sciences, 2016, 372, 111- 125.
doi: 10.1016/j.ins.2016.08.030
10 SUN Bingzhen , CHEN Xiangtang , ZHANG Liye , et al. Three-way decision making approach to conflict analysis and resolution using probabilistic rough set over two universes[J]. Information Sciences, 2020, 507, 809- 822.
doi: 10.1016/j.ins.2019.05.080
11 FAN Yan, QI Jianjun, WEI Ling. A conflict analysis model based on three-way decisions[C]//International Joint Conference on Rough Sets. Cham: Springer, 2018.
12 LANG Guangming , MIAO Dduoqian , CAI Mingjie . Three-way decision approaches to conflict analysis using decision-theoretic rough set theory[J]. Information Sciences, 2017, 406, 185- 207.
13 LANG Guangming , LUO Junfang , YAO Yiyu . Three-way conflict analysis: a unification of models based on rough sets and formal concept analysis[J]. Knowledge-Based Systems, 2020, 194, 105556.
doi: 10.1016/j.knosys.2020.105556
14 LANG Guangming , YAO Yiyu . New measures of alliance and conflict for three-way conflict analysis[J]. International Journal of Approximate Reasoning, 2021, 132, 49- 69.
doi: 10.1016/j.ijar.2021.02.003
15 SUO Lang , WANG qing , YANG Hailong . Three-way conflict analysis based on incomplete situation tables: a tentative study[J]. International Journal of Approximate Reasoning, 2022, 145, 51- 74.
doi: 10.1016/j.ijar.2022.03.004
16 LUO Junfang , HU Mengjun , LANG Guangming , et al. Three-way conflict analysis based on alliance and conflict functions[J]. Information Sciences, 2022, 594, 322- 359.
doi: 10.1016/j.ins.2022.01.067
17 DU Junliang , LIU Sifeng , LIU Yong , et al. A novel approach to three-way conflict analysis and resolution with Pythagorean fuzzy information[J]. Information Sciences, 2022, 584, 65- 88.
doi: 10.1016/j.ins.2021.10.051
18 RAMANNA S . Conflict analysis in the framework of rough sets and granular computing[M]. Chichester: John Wiley & Sons, 2008: 1038- 1053.
19 RAMANNA S , PETERS J F , SKOWRON A . Approaches to conflict dynamics based on rough sets[J]. Fundamenta Informaticae, 2007, 75 (1/2/3/4): 453- 468.
20 LIN T Y. Granular computing on binary relations analysis of conflict and Chinese Wall Security Policy[C]//International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 2002.
21 BANERJEE A , MERUGU S , DHILLON I S , et al. Clustering with Bregman divergences[J]. Journal of Machine Learning Research, 2005, 6 (4): 1705- 1749.
22 BREGMAN L M . The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7 (3): 200- 217.
doi: 10.1016/0041-5553(67)90040-7
23 XU Feng , CAI Mingjie , SONG Huailing , et al. The selection of feasible strategies based on consistency measurement of cliques[J]. Information Sciences, 2022, 583, 33- 55.
doi: 10.1016/j.ins.2021.10.080
[1] Tiantai LIN,Bin YANG. A q-rung orthopair fuzzy set based conflict analysis model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 77-90.
[2] Xue-mei WANG,Xing-shu CHEN,Hai-zhou WANG,Wen-xian WANG. Automatic extraction of key information for news web pages based on tag and block features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 67-74.
[3] LI Zhi-heng, YANG Zhi-hao, LIN Hong-fei. Semantic output output-based disease-protein knowledge extraction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 104-110.
[4] SU Feng-long, XIE Qing-hua, HUANG Qing-quan, QIU Ji-yuan, YUE Zhen-jun. Semi-supervised method for attribute extraction based on transductive learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 111-115.
[5] ZHU Li-ping, LI Hong-qi, YANG Zhong-guo, LIU Qiang. An information extraction method for scientific literature introduction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(07): 23-30.
[6] WANG Hui, CHEN Guang. Feature extraction method based on Bootstrapping in English product comment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 23-29.
[7] GUAN Mian, MA Jun. Automatic structured data extraction from Web forums [J]. J4, 2010, 45(5): 42-47.
[8] WANG Jing,YAO Yong,LIU Zhi-jing . Web information extraction based on a generalized hidden Markov model [J]. J4, 2007, 42(11): 49-52 .
[9] WANG Lei,CHEN Zhi-ping,LI Zhi-cheng . Using text blocks based on multiple templates hidden markov model for text information extraction [J]. J4, 2006, 41(3): 19-24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .