JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 77-90.doi: 10.6040/j.issn.1671-9352.4.2022.9449

Previous Articles     Next Articles

A q-rung orthopair fuzzy set based conflict analysis model

Tiantai LIN(),Bin YANG*()   

  1. School of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-08-09 Online:2023-12-20 Published:2023-12-19
  • Contact: Bin YANG E-mail:tiantai_lin@163.com;binyang0906@nwsuaf.edu.cn

Abstract:

We propose a q-rung orthopair fuzzy set based conflict analysis model, employ q-rung orthopair fuzzy numbers to denote the attitudes of agents toward issues. In addition, comprehensive alliance distance is used to measure the alliance degree of agents on the issues, and the conflicting reasons are obtained based on an analysis of the three alliance levels of agents and issues. Furthermore, the classification ability evaluation of a feasible strategy set is given based on fuzzy rough self-information, and a backward algorithm for finding the best feasible strategy is constructed. We consider the three alliance levels of the agents as the classification information required by fuzzy rough self-information. Further, the upper and lower approximations of the alliance levels can be defined, so as to obtain the classification ability evaluation of the feasible strategy set. Finally, the feasibility of the model and algorithm proposed in this paper is demonstrated through an example of Middle East conflict, and analyze the influence of changing value of thresholds on the optimal feasible strategy.

Key words: rough set, self-information, conflict analysis, q-rung orthopair fuzzy set

CLC Number: 

  • TP18

Fig.1

q-rung orthopair fuzzy set"

Table 1

q-ROFIS of Mideast conflict"

U c1 c2 c3 c4 c5
X1 Q(1.0,0.0) Q(0.9,0.3) Q(0.8,0.2) Q(0.9,0.1) Q(0.9,0.2)
X2 Q(0.9,0.1) Q(0.5,0.5) Q(0.1,0.9) Q(0.3,0.8) Q(0.1,0.9)
X3 Q(0.1,0.9) Q(0.1,0.9) Q(0.2,0.8) Q(0.1,0.9) Q(0.9,0.5)
X4 Q(0.7,0.7) Q(0.1,0.9) Q(0.3,0.7) Q(0.5,0.5) Q(0.1,0.9)
X5 Q(0.9,0.2) Q(0.4,0.6) Q(0.1,0.9) Q(0.1,0.9) Q(0.2,0.9)
X6 Q(0.0,1.0) Q(0.9,0.1) Q(0.2,0.9) Q(0.5,0.5) Q(0.8,0.4)

Table 2

Three alliances of agents and issues"

q $ \mathscr{S} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{W} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{N} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{S} \mathscr{A}_{A}^{c_{\diamond}, c^{\diamond}}$ $ \mathscr{W} \mathscr{A}_{A}^{c_{\diamond}, c^{\diamond}}$
3 {x2x4x5} {x1x3} {x6} {c3} {c4c5}
4 {x2x5} {x1x3x4} {x6} {c3} {c4c5}
5 {x2x5} {x1x3x4} {x6} {c3} {c4c5}

Table 3

Feasible strategies of Mideast conflict"

B1 B2 B3 B4 B5 B6
{c1} {c1c2} {c2c4} {c1c2c3} {c1c4c5} {c1c2c3c4}
B7 B8 B9 B10 B11 B12
{c2} {c1c3} {c2c5} {c1c2c4} {c2c3c4} {c1c2c3c5}
B13 B14 B15 B16 B17 B18
{c3} {c1c4} {c3c4} {c1c2c5} {c2c3c5} {c1c2c4c5}
B19 B20 B21 B22 B23 B24
{c4} {c1c5} {c3c5} {c1c3c4} {c2c4c5} {c1c3c4c5}
B25 B26 B27 B28 B29 B30
{c5} {c2c3} {c4c5} {c1c3c5} {c3c4c5} {c2c3c4c5}

Table 4

Self-information of feasible strategies of Mideast conflict"

q I(B1) I(B2) I(B3) I(B4) I(B5) I(B6)
3 0.765 4 1.740 2 0.502 0 1.746 4 1.575 6 1.799 9
4 0.645 9 1.465 0 0.242 3 1.515 0 1.431 8 1.569 3
5 0.697 0 1.457 5 0.240 4 1.510 4 1.476 4 1.572 7
q I(B7) I(B8) I(B9) I(B10) I(B11) I(B12)
3 0.247 2 0.957 6 0.455 8 1.799 9 0.611 5 1.764 5
4 0.073 0 0.825 0 0.197 7 1.569 3 0.328 2 1.529 1
5 0.066 0 0.854 8 0.143 4 1.572 7 0.304 9 1.523 3
q I(B13) I(B14) I(B15) I(B16) I(B17) I(B18)
3 1.339 1 1.282 9 0.137 7 1.764 5 0.581 7 1.818 1
4 2.177 4 1.265 9 0.085 3 1.520 9 0.310 3 1.583 5
5 1.977 0 1.380 2 0.110 2 1.506 2 0.247 4 1.585 7
q I(B19) I(B20) I(B21) I(B22) I(B23) I(B24)
3 0.203 4 1.340 9 0.127 1 1.282 9 0.643 2 1.575 6
4 0.131 5 1.166 1 0.120 8 1.265 9 0.354 3 1.431 8
5 0.125 8 1.163 9 0.101 0 1.380 2 0.318 4 1.476 4
q I(B25) I(B26) I(B27) I(B28) I(B29) I(B30)
3 0.724 9 0.509 3 0.280 5 1.340 9 0.390 3 0.688 3
4 0.210 4 0.236 9 0.201 5 1.173 8 0.269 3 0.395 8
5 0.228 5 0.191 3 0.221 0 1.190 6 0.267 8 0.359 6

Table 5

The change of optimal feasible strategy related to c°"

c° $ \mathscr{S} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{W} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{N} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ OFS
0.50 {x2x4x5} $ \emptyset $ {x1x3x6} {c1c2c4}
0.51 {x2x4x5} $ \emptyset $ {x1x3x6} {c1c2c4}
0.52 {x2x5} {x4} {x1x3x6} {c1c2c4c5}
0.53 {x2x5} {x4} {x1x3x6} {c1c2c4c5}
0.54 {x2x5} {x4} {x1x3x6} {c1c2c4c5}
0.55 $ \emptyset $ {x2x4x5} {x1x3x6} {c1c2c4}

Table 6

The change of optimal feasible strategy related to c°"

c° $ \mathscr{S} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{W} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ $ \mathscr{N} \mathscr{U}_{A}^{c_{\circ}, c^{\circ}}$ OFS
0.5 {x2x4x5} $ \emptyset $ {x1x3x6} {c1c2c4}
0.4 {x2x4x5} {x1x3} {x6} {c1c2c4c5}
0.3 {x2x4x5} {x1x3x6} $ \emptyset $ {c1c2c4}
0.2 {x2x4x5} {x1x3x6} $ \emptyset $ {c1c2c4}
0.1 {x2x4x5} {x1x3x6} $ \emptyset $ {c1c2c4}
0.0 {x2x4x5} {x1x3x6} $ \emptyset $ {c1c2c4}
1 PAWLAK Z . On conflicts[J]. International Journal of Man-Machine Studies, 1984, 21 (2): 127- 134.
doi: 10.1016/S0020-7373(84)80062-0
2 DEJA R . Conflict analysis[J]. International Journal of Intelligent Systems, 2002, 17 (2): 235- 253.
doi: 10.1002/int.10019
3 PAWLAK Z . An inquiry into anatomy of conflicts[J]. Information Sciences, 1998, 109 (1/2/3/4): 65- 78.
4 PAWLAK Z . Some remarks on conflict analysis[J]. European Journal of Operational Research, 2005, 166 (3): 649- 654.
doi: 10.1016/j.ejor.2003.09.038
5 PAWLAK Z , SKOWRON A . Rough sets and Boolean reasoning[J]. Information Sciences, 2007, 177 (1): 41- 73.
doi: 10.1016/j.ins.2006.06.007
6 LI X , WANG X , LANG G , et al. Conflict analysis based on three-way decision for triangular fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 132, 88- 106.
doi: 10.1016/j.ijar.2020.12.004
7 LIU Y , LIN Y . Intuitionistic fuzzy rough set model based on conflict distance and applications[J]. Applied Soft Computing, 2015, 31, 266- 273.
doi: 10.1016/j.asoc.2015.02.045
8 LANG G , MIAO D , FUJITA H . Three-way group conflict analysis based on Pythagorean fuzzy set theory[J]. IEEE Transactions on Fuzzy Systems, 2019, 28 (3): 447- 461.
9 TONG S , SUN B , CHU X , et al. Trust recommendation mechanism-based consensus model for Pawlak conflict analysis decision making[J]. International Journal of Approximate Reasoning, 2021, 135, 91- 109.
doi: 10.1016/j.ijar.2021.05.001
10 YI H , ZHANG H , LI X , et al. Three-way conflict analysis based on hesitant fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 139, 12- 27.
doi: 10.1016/j.ijar.2021.09.002
11 LANG G , MIAO D , CAI M . Three-way decision approaches to conflict analysis using decision-theoretic rough set theory[J]. Information Sciences, 2017, 406, 185- 207.
12 SUN B , MA W . Rough approximation of a preference relation by multi-decision dominance for a multi-agent conflict analysisproblem[J]. Information Sciences, 2015, 315, 39- 53.
doi: 10.1016/j.ins.2015.03.061
13 YAO Y . Three-way conflict analysis: reformulations and extensions of the Pawlak model[J]. Knowledge-Based Systems, 2019, 180, 26- 37.
doi: 10.1016/j.knosys.2019.05.016
14 SUN B , MA W , ZHAO H . Rough set-based conflict analysis model and method over two universes[J]. Information Sciences, 2016, 372, 111- 125.
doi: 10.1016/j.ins.2016.08.030
15 LANG G , LUO J , YAO Y . Three-way conflict analysis: a unification of models based on rough sets and formal concept analysis[J]. Knowledge-Based Systems, 2020, 194, 105556.
doi: 10.1016/j.knosys.2020.105556
16 ATANASSOV K . Intuitionistic fuzzy sets[J]. International Journal Bioautomation, 2016, 20, 1- 6.
17 ATANASSOV K T . A second type of intuitionistic fuzzy sets[J]. Busefal, 1993, 56, 66- 70.
18 YAGER R R . Generalized orthopair fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2016, 25 (5): 1222- 1230.
19 GARG H , CHEN S M . Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets[J]. Information Sciences, 2020, 517, 427- 447.
doi: 10.1016/j.ins.2019.11.035
20 XING Y , ZHANG R , ZHOU Z , et al. Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making[J]. Soft Computing, 2019, 23 (22): 11627- 11649.
doi: 10.1007/s00500-018-03712-7
21 LIU P , CHEN S M , WANG P . Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50 (10): 3741- 3756.
22 LIU P , LIU W . Multiple-attribute group decision-making based on power Bonferroni operators of linguistic q-rung orthopair fuzzy numbers[J]. International Journal of Intelligent Systems, 2019, 34 (4): 652- 689.
doi: 10.1002/int.22071
23 LIU P , WANG P . Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2018, 27 (5): 834- 848.
24 LIU Z , WANG S , LIU P . Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators[J]. International Journal of Intelligent Systems, 2018, 33 (12): 2341- 2363.
doi: 10.1002/int.22032
25 WEI G , GAO H , WEI Y . Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33 (7): 1426- 1458.
doi: 10.1002/int.21985
26 XU L , LIU Y , LIU H . Some improved q-rung orthopair fuzzy aggregation operators and their applications to multiattribute group decision-making[J]. Mathematical Problems in Engineering, 2019, 2019, 1- 18.
27 YANG W , PANG Y . New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2019, 34 (3): 439- 476.
doi: 10.1002/int.22060
28 WANG P , WANG J , WEI G , et al. Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications[J]. Mathematics, 2019, 7 (4): 340.
doi: 10.3390/math7040340
29 ZHANG Z , CHEN S M . Group decision making with incomplete q-rung orthopair fuzzy preference relations[J]. Information Sciences, 2021, 553, 376- 396.
doi: 10.1016/j.ins.2020.10.015
30 ALI M I . Another view on q-rung orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2018, 33 (11): 2139- 2153.
doi: 10.1002/int.22007
31 DU W S . Minkowski-type distance measures for generalized orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2018, 33 (4): 802- 817.
doi: 10.1002/int.21968
32 ALI Z , MAHMOOD T . Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets[J]. Computational and Applied Mathematics, 2020, 39 (3): 1- 27.
33 PENG X , LIU L . Information measures for q-rung orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2019, 34 (8): 1795- 1834.
doi: 10.1002/int.22115
34 WEI G , WEI C , WANG J , et al. Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization[J]. International Journal of Intelligent Systems, 2019, 34 (1): 50- 81.
35 KAMACI H, PETCHIMUTHU S. Some similarity measures for interval-valued bipolar q-rung orthopair fuzzy sets and their application to supplier evaluation and selection in supply chain management[J/OL]. Environment, Development and Sustainability, 2022. https://doi.org/10.1007/s10668-022-02130-y.
36 WANG C , HUANG Y , DING W , et al. Attribute reduction with fuzzy rough self-information measures[J]. Information Sciences, 2021, 549, 68- 86.
37 ZADEH L A . Fuzzy sets[J]. Information and Control, 1965, 8 (3): 338- 353.
38 DUBOIS D , PRADE H . Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General System, 1990, 17 (2/3): 191- 209.
39 GRECO S, MATARAZZO B, SLOWINSKI R. Fuzzy similarity relation as a basis for rough approximations[C]//International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 1998: 283-289.
40 DU J , LIU S , LIU Y , et al. A novel approach to three-way conflict analysis and resolution with Pythagorean fuzzy information[J]. Information Sciences, 2022, 584, 65- 88.
[1] Qian WANG,Xianyong ZHANG. Incomplete neighborhood weighted multi-granularity decision-theoretic rough sets and three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 94-104.
[2] Yuwen HU,Jiucheng XU,Qianqian ZHANG. Lyapunov stability of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 52-59.
[3] Chengxiang HU,Li ZHANG,Xiaoling HUANG,Huibin WANG. Dynamic neighborhood rough sets approaches for updating knowledge while attributes generalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 37-51.
[4] WU Fan, KONG Xiangzhi. Fuzzy β-covering rough set model based on fuzzy information system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 10-16.
[5] SHI Junpeng, ZHANG Yanlan. Dynamic updating algorithm of local neighborhood rough sets with the deletion of objects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 17-25.
[6] LIU Changshun, LIU Yan, SONG Jingjing, XU Taihua. Attribute reduction algorithm based on discreteness of the universe [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 26-35.
[7] JIN Lei, FENG Tao, ZHANG Shaopu. Conflict analyses and deciosion analyses based on probabilistic multi-valued information systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 91-107.
[8] QIAN Jin, TANG Da-wei, HONG Cheng-xin. Research on multi-granularity hierarchical sequential three-way decision model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 33-45.
[9] HU Yu-wen, XU Jiu-cheng, XU Tian-he. Bernoulli shift of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 13-20.
[10] ZHANG Xiao-yu, LI Tong-jun. α-lower and upper approximation reductions in inconsistent interval-valued decision systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 20-27.
[11] SHI Ji, SUO Zhong-ying. Loss function determination method based on interval number analytic hierarchy process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 28-37.
[12] SUN Wen-xin, LIU Yu-feng. Generalized multi-granularity rough sets based on parameter granular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 11-19.
[13] XUE Zhan-ao, LI Yong-xiang, YAO Shou-qian, JING Meng-meng. Data classification method based on Bayesian intuitionistic fuzzy rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 1-10.
[14] SUN Lin, LIANG Na, XU Jiu-cheng. Feature selection using adaptive neighborhood mutual information and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 13-24.
[15] ZHANG Jiao-jiao, ZHANG Shao-pu, FENG Tao. Dominance relationship and reduction of Pythagorean fuzzy systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 96-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .