JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (8): 39-52.doi: 10.6040/j.issn.1671-9352.7.2021.141
Previous Articles Next Articles
ZHANG Zhi-hao1,2, LIN Yao-jin1,2*, LU Shun1,2, WU Yi-lin1,2, WANG Chen-xi1,2
CLC Number:
[1] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied Soft Computing, 2015, 38(1):224-256. [2] 王晨曦, 林耀进, 唐莉, 等. 基于信息粒化的多标记特征选择算法[J]. 模式识别与人工智能, 2018, 31(2):123-131. WANG Chenxi, LIN Yaojin, TANG Li, et al. Multi-label feature selection based on information granulation[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(2):123-131. [3] 林耀进, 陈祥焰, 白盛兴, 等. 基于最大决策边界的高维类不平衡数据在线流特征选择[J]. 模式识别与人工智能, 2020, 33(9):820-829. LIN Yaojin, CHEN Xiangyan, BAI Shengxing, et al. Online streaming feature selection for high-dimensional and class-imbalanced data based on max-decision boundary[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(9):820-829. [4] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Streaming feature selection for multilabel learning based on fuzzy mutual information[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6):1491-1507. [5] LIU Jinghua, LIN Yaojin, WU Shunxiang, et al. Online multi-label group feature selection[J]. Knowledge-Based Systems, 2018, 143:42-57. [6] ZHANG M L, PENA J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information Sciences, 2009, 179(19):3218-3229. [7] GHARROUDI O, ELGHAZEL H, AUSSEM A. A comparison of multi-label feature selection methods using the random forest paradigm[C] //Proceedings of the 2014 Canadian Conference on Artificial Intelligence. Montreal: Springer, 2014:95-106. [8] ZHANG Jia, LI Candong, CAO Donglin, et al. Multi-label learning with label-specific features by resolving label correlations[J]. Knowledge-Based Systems, 2018, 159:148-157. [9] ZHU Pengfei, XU Qian, HU Qinghua, et al. Multi-label feature selection with missing labels[J]. Pattern Recognition, 2018, 74:488-502. [10] HUANG Jun, QIN Feng, ZHENG Xiao, et al. Improving multi-label classification with missing labels by learning label-specific features[J]. Information Sciences, 2019, 492:124-146. [11] LIU Jinghua, LI Yuwen, WENG Wei, et al. Feature selection for multi-label learning with streaming label[J]. Neurocomputing, 2020, 387:268-278. [12] LIN Yaojin, HU Qinghua, ZHANG Jia, et al. Multi-label feature selection with streaming labels[J]. Information Science, 2016, 372(1):256-275. [13] XU Qian, ZHU Pengfei, HU Qinghua, et al. Robust multi-label feature selection with missing labels[C] //The 7th Chinese Conference on Pattern Recognition. Chengdu: Springer, 2016:752-765. [14] MA J H, CHOW T. Label-specific feature selection and two-level label recovery for multi-label classification with missing labels[J]. Neural Networks, 2019, 118:110-126. [15] WANG Chenxi, LIN Yaojin, LIU Jinghua. Feature selection for multi-label learning with missing labels[J]. Applied Intelligence, 2019, 49(8):3027-3042. [16] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202. [17] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. [18] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [19] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015, 168:92-103. |
[1] | SUN Lin, CHEN Yu-sheng, XU Jiu-cheng. Multilabel feature selection algorithm based on improved ReliefF [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 1-11. |
[2] | ZHANG Yao, MA Ying-cang, YAND Xiao-fei, ZHU Heng-dong, YANG Ting. Multi-label feature selection based on manifold structure and flexible embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 91-102. |
[3] | Ying YU,Xin-nian WU,Le-wei WANG,Ying-long ZHANG. A multi-label three-way classification algorithm based on label correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 81-88. |
[4] | HUANG Tian-yi, ZHU William. Cost-sensitive feature selection via manifold learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 91-96. |
[5] | WAN Zhong-ying, WANG Ming-wen, ZUO Jia-li, WAN Jian-yi. Feature selection combined with the global and local information(GLFS) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 87-93. |
[6] | LI Zhao,SUN Zhan-,LI Xiao,LI Cheng,. Study on feature selection method based on information loss [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 7-12. |
[7] | ZHENG Yan, PANG Lin, BI Hui, LIU Wei, CHENG Gong. Feature selection algorithm based on sentiment topic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 74-81. |
[8] | XIA Meng-nan, DU Yong-ping, ZUO Ben-xin. Micro-blog opinion analysis based on syntactic dependency and feature combination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 22-30. |
[9] | PAN Qing-qing, ZHOU Feng, YU Zheng-tao, GUO Jian-yi, XIAN Yan-tuan. Recognition method of Vietnamese named entity based on#br# conditional random fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 76-79. |
[10] |
YU Ran 1,2, LIU Chun-yang3*, JIN Xiao-long 1, WANG Yuan-zhuo 1, CHENG Xue-qi 1.
Chinese spam microblog filtering based on the fusion of multi-angle features [J]. J4, 2013, 48(11): 53-58. |
[11] | FENG Xin-ying1,2, JI Hua1,2, ZHANG Hua-xiang1,2. Multi-label RBF neural networks learning algorithm based on clustering optimization [J]. J4, 2012, 47(5): 63-67. |
[12] | YI Chao-qun, LI Jian-ping, ZHU Cheng-wen. A kind of feature selection based on classification accuracy of SVM [J]. J4, 2010, 45(7): 119-121. |
[13] | YANG Yu-Zhen, LIU Pei-Yu, SHU Zhen-Fang, QIU Ye. Research of an improved information gain methodusing distribution information of terms [J]. J4, 2009, 44(11): 48-51. |
[14] | YUAN Xiao-hang,DU Xiao-yong . iRIPPER: an improved rule-based text categorization algorithm [J]. J4, 2007, 42(11): 66-68 . |
[15] | YU Jun-ying,WANG Ming-wen,SHENG Jun . Class information feature selection method for text classification [J]. J4, 2006, 41(3): 144-148 . |