JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (06): 45-52.doi: 10.6040/j.issn.1671-9352.0.2014.229
Previous Articles Next Articles
ZHANG Hou-jun, CHU Mao-quan
CLC Number:
[1] CUNINGHAME-GREEN R A. Minimax algebra[M]// Lecture Notes in Economics and Mathematical Systems. Berlin: Springer, 1979. [2] BUTKOVIC P. Max-algebra: the linear algebra of combinatorics[J]. Linear Algebra Appl, 2003, 367:313-335. [3] CAO Z Q, KIM K H, ROUSH F W. Incline algebra and applications[M]. New York: John Wiley, 1984. [4] CECHLAROVA K, PLAVKA J. Linear independence in bottleneck algebras[J]. Fuzzy Sets and Systems, 1996, 77:337-348. [5] KIM K H, ROUSH F W. Generalized fuzzy matrices[J]. Fuzzy Sets and Systems, 1980, 4:293-315. [6] DI-NOLAR A, LETTIERI A, PERFILIEVA I. Algebraic analysis of fuzzy systems[J]. Fuzzy Sets and Systems, 2007, 158:1-22. [7] ZHAO Shan, WANG Xueping. Invertible matrices and semilinear spaces over commutative semirings[J]. Information Sciences, 2010, 180:5115-5124. [8] ZHAO Shan, WANG Xueping. Bases in semilinear spaces over join-semirings[J]. Fuzzy Sets and Systems, 2011, 182:93-100. [9] SHU Qianyu, WANG Xueping. Bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra Appl, 2011, 435:2681-2692. [10] SHU Qianyu, WANG Xueping. Standard orthogonal vectors in semilinear spaces and their applications[J]. Linear Algebra Appl, 2012, 437:2733-2754. [11] SHU Qianyu, WANG Xueping. Dimensions of L-semilinear spaces over zerosumfree semirings[C]// IFSA World Congress and NAFIPS Annual Meeting. Edmonton, Canada: IEEE, 2013: 35-40. [12] GOLAR J S. Semirings and their applications[M]. Dordrecht: Kluwer Academic Publishers, 1999. [13] REUTENAUER C, STRAUBING H. Inversion of matrices over a commutative semiring[J]. J Algebra, 1984, 88:350-360. [14] TAN Yijia. Bases in semimodules over commutative semirings[J]. Linear Algebra Appl, 2014, 443:139-152. [15] KANAN A M, PETROVIC Z Z. Note on cardinality of bases in semilinear spaces over zerosumfree semirings[J]. Linear Algebra Appl, 2013, 439:2795-2799. |
[1] | GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21. |
[2] | CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. |
[3] | MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23. |
[4] | YAN Ting-ting, LIU Zhong-kui. Coresolution dimensions [J]. J4, 2013, 48(8): 5-14. |
[5] | . τProjective test modules and τprojective dimensions [J]. J4, 2009, 44(6): 60-62. |
|