JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (11): 99-106.doi: 10.6040/j.issn.1671-9352.0.2016.232
Previous Articles Next Articles
FANG Gang1,2, LUAN Xi-wu1,2 *, FANG Jian-hui3
CLC Number:
[1] 梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999. MEI Fengxiang. Applications of Lie Groups and Lie Algebras to constrained mechanical systems[M]. Beijing: Science Press, 1999. [2] CHEN Xiangwei, ZHANG Ruichao, MEI Fengxiang. Perturbation of symmetries of birkhoff system and adiabatic invariants[J]. Acta Mechanica Sinica, 2000, 16(3):282-288. [3] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性[J]. 物理学报, 2003, 52(12):2941-2944. LOU Shaokai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system [J]. Acta Phys Sin, 2003, 52(12):2941-2944. [4] 梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京: 北京理工大学出版社, 2004. MEI Fengxiang. Symmetries and conserved quantities of constrained mechanical systems[M]. Beijing: Beijing Institute of Technology Press, 2004. [5] FU Jingli, CHEN Liqun. Form invariance, Noether symmetry and Lie symmetry of Hamiltonian systems in phase space[J]. Mechanics Research Communications, 2004, 31(1):9-19. [6] TARASOV V E, ZASLAVSKY G M. Nonholonomic constraints with fractional derivatives[J]. Journal of Physics A: Mathematical and General, 2006, 39(21):9797-9815. [7] MEI Fengxiang, WU Huibin. Symmetry of Lagrangians of nonholonomic systems[J]. Physics Letters A, 2008, 372(13):2141-2147. [8] CAI Jianle, LOU Shaokai, MEI Fengxiang. Conformal invariance and conserved quantity of Hamilton systems[J]. Chin Phys B, 2008, 17(9):3170-3174. [9] 梅凤翔. 经典约束力学系统对称性与守恒量研究进展[J]. 力学进展, 2009, 39(1):37-43. MEI Fengxiang. Advances in the symmetries and conserved quantities of classical constrained systems[J]. Advances in Mechanics, 2009, 39(1), 37-43. [10] DORODNITSYN V, KOZLOV R. Invariance and first integrals of continuous and discrete Hamiltonian equations[J]. Journal of Engineering Mathematics, 2010, 66(1):253-270. [11] AGRAWAL O P. Generalized variational problems and Euler-Lagrange equations[J]. Comput Math Appl, 2010, 59(5):1852-1864. [12] GOU Yongxin, LIU Chang, LIU Shixing. Generalized Birkhoffian realization of nonholonomic systems[J]. Communications in Mathematics, 2010, 18(1):21-35 [13] FANG Jianhui, ZHANG Mingjiang, ZHANG Weiwei. A new type of conserved quantity induced by symmetries of Lagrange system[J]. Physics Letters A, 2010, 374(17):1806-1811. [14] NUCCI M C. Many conserved quantities induced by Lie symmetries of a Lagrangian system[J]. Physics Letters A, 2011, 375(11):1375-1377. [15] WU Huibin, MEI Fengxiang. Symmetry of Lagrangians of a holonomic variable mass system[J]. Chin Phys B, 2012, 21(6):064501.1-064501.4. [16] LOU Shaokai, LI Lin. Fractional generalized Hamiltonian equations and its integral invariants[J] , Nonlinear Dynamacs, 2013, 73(1):339-346. [17] 张毅. 非保守动力学系统Noether对称性的摄动与绝热不变量[J]. 物理学报, 2013, 60(16):164501.1-164501.5. ZHANG Yi. Perturbation to Noether symmetries and adiabatic invariants for nonconservative dynamic systems[J]. Acta Phys Sin, 2013, 62(16):164501.1-164501.5. [18] 李彦敏, 陈向炜, 吴惠彬, 等. 广义Birkhoff系统的两类广义梯度表示[J]. 物理学报, 2016, 65(8):080201.1-080201.4. LI Yanmin, CHEN Xiangwei, WU Huibin, et al. Two kinds of generalized gradient representations for generalized Birkhoff system[J]. Acta Phys Sin, 2016, 65(8):080201.1-080201.4. [19] 刘世兴, 郭永新, 刘畅. 一类特殊非完整力学系统的辛算法计算[J]. 物理学报, 2008, 57(3):1311-1315. LIU Shixing, GUO Yongxin, LIU Chang. A special nonholonomic mechanical system calculated by symplectic method[J]. Acta Phys Sin, 2008, 57(3):1311-1315. [20] 刘世兴, 刘畅, 常鹏, 等. 辛几何算法在特殊Chaplygin系统中的应用研究[J]. 物理学报, 2011, 60(3):034501.1-034501.4. LIU Shixing, LIU Chang, CHANG Peng, et al. The application of symplectic geometric algorithm in a special Chaplygin system[J]. Acta Phys Sin, 2011, 60(3):034501.1-034501.4. [21] 冯康, 秦孟兆. 哈密顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003. FENG Kang, QIN Mengzhao. Symplectic geometric algorithms for hmiltonian systems[M]. Hangzhou: Zhejiang Science and Technology Press, 2003. [22] 刘洪, 罗明秋, 李幼铭, 等. 共反射点轨迹的Hamilton方法[J]. 地球物理学报, 1999, 42(5):685-694. LIU Hong, LOU Mingqiu, LI Youming, et al. Hamilton method in describing common reflection point trajectory[J]. Chinese Journal of Geophysics, 1999, 42(5):685-694. [23] 罗明秋, 刘洪, 李幼铭. 地震波传播的哈密顿表述及辛几何算法[J]. 地球物理学报, 2001, 44(1):120-128. LOU Mingqiu, LIU Hong, LI Youming. Hamiltonian description and symplectic method of seismic wave propagation[J]. Chinese Journal of Geophysics, 2001, 44(1):120-128. [24] 曹禹, 杨孔庆. 对声波和弹性波传播模拟的Hamilton系统方法[J]. 物理学报, 2003, 52(8):1984-1992. CAO Yu, YANG Kongqing. Hamiltonian system approach for simulation of acoustic and elastic wave propagation[J]. Acta Phys Sin, 2003, 52(8):1984-1992. [25] 方刚, 张斌. 弹性介质的Lagrange动力学与地震波方程[J]. 物理学报, 2013, 62(15):154502.1-154502.6. FANG Gang, ZHANG Bin. Lagrangian dynamics and seismic wave align of elastic medium[J]. Acta Phys Sin, 2013, 62(15):154502.1-154502.6. [26] 朱滨. 弹性力学[M]. 合肥: 中国科学技术大学出版社, 2008. ZHU Bin. Elastic Mechanics[M]. Hefei: Press of University of Science and Technology of China, 2008. [27] BONOMI E, BRIEGER L, NARDONE C, et al. 3D spectral reverse time migration with no-wraparound absorbing conditions[C] //SEG International Exposition and 68th Annual Meeting. New Orleans Louisiana: Society of Exploration Geophysists, 1998: 1925-1928. |
[1] |
ZHANG Xing-gang,KONG Wei-shu .
Theoretical and numerical investigation of elastic string with fixed ends [J]. J4, 2008, 43(10): 71-76 . |
|