JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (12): 1-6.doi: 10.6040/j.issn.1671-9352.0.2015.629
ZHANG Dong-qing, YIN Xiao-bin*, GAO Han-peng
CLC Number:
[1] REGE M B, CHHAWCHHARIA S. Armendariz rings[J]. Pro Japan Acad Ser A Math Sci, 1997, 73(1):14-17. [2] ANDERSON D D, CAMILLO V. Armendariz rings and Gaussian rings[J]. Comm Algebra, 1998(26):2265-2272. [3] KIM N K, LEE Y. Armendariz rings and reduced rings[J]. J Algebra, 2000, 223(2):477-488. [4] ZHANG C P, CHEN J L. Quasi-Armendariz Modules[J]. J Math Res Exposition, 2010(30):734-742. [5] LEE T K, WONG T L. On weak Armenndariz rings[J]. Houston J Math, 2003(29):583-593. [6] JEON Y C, KIM H K, LEE, et al. On weak-Armendariz rings[J]. Bull Korean Math Soc, 2009(46):135-146. [7] HIRANO Y. On annihilator ideals of a polynomial ring over a noncommutative ring[J]. J Pure Appl Algebra, 2002, 168(1):45-52. [8] 佟文廷. 同调代数引论[M]. 北京: 高等教育出版社, 1998. [9] KIM N K, LEE. Armendariz rings and reduced rings[J]. J Algebra, 2000, 223:477-488. [10] REGE M B, CHHAWCHHARIA S. Armendariz rings[J]. Pro Japan Acad Ser A Math Sci, 1997, 73(1):14-17. [11] CUI J, XHEN Jianlong. On McCoy modules[J]. Bull Koren Math Soc, 2011(48):23-33. [12] STENSTROM B. Ring of Quotients[M]. New York: Springer-Verlag, 1975. [13] ARMENDARIZ E P. A note on extensions of Bear and P.P.-rings[J]. J Austral Math Soc, 1974, 18:470-473. [14] ARMENDARIZ D D, CAMILLO V. Armendariz rings and Gaussian rings[J]. Comm Algebra, 1998, 26(7):2265-2272. [15] HIRANO Y. On annihilator ideals of a polynomial ring over a noncommutative ring[J]. J Pure Appl Algebra, 2002, 168(1):45-52. |
[1] | ZHANG Wan-ru, GUO Jin-sheng. A class of quasi-Armendariz subrings of matrix rings over reduced rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 67-70. |
|