JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (3): 1-10.doi: 10.6040/j.issn.1671-9352.0.2016.079
FAN Ting-jun, BAI Su-ran
CLC Number:
[1] MEEK K M, KNUPP C. Corneal structure and transparency[J]. Prog Retin Eye Res, 2015, 49:1-16. [2] LJUBIMOV A V, SAGHIZADEH M. Progress in corneal wound healing[J]. Prog Retin Eye Res, 2015, 49:17-45. [3] NETTO M V, MOHAN R R, AMBRÓSIO R JR, et al. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy[J]. Cornea, 2005, 24(5):509-522. [4] FINI M E, STRAMER B M. How the cornea heals: cornea-specific repair mechanisms affecting surgical outcomes[J]. Cornea, 2005, 24(8):S2-11. [5] 赵文卓, 樊廷俊, 胡修忠, 等. 组织工程人角膜基质体外重建的研究进展[J]. 山东大学学报(医学版), 2011, 49(8):62-66. ZHAO Wenzhuo, FAN Tingjun, HU Xiuzhong, et al. Research advances on in vitro reconstruction of tissue-engineered human corneal stroma[J]. Journal of Shandong University( Medical Science), 2011, 49(8):62-66. [6] MICHELACCI Y M. Collagens and proteoglycans of the corneal extracellular matrix[J]. Braz J Med Biol Res, 2003, 36(8):1037-1046. [7] JESTER J V, MOLLER-PEDERSEN T, HUANG J, et al. The cellular basis of corneal transparency: evidence for ‘corneal crystallins’ [J]. J Cell Sci, 1999, 112(Pt5):613-622. [8] 樊廷俊, 胡修忠, 葛源. 人类角膜基质细胞研究进展[J]. 山东大学学报(医学版), 2012, 50(8), 57-61. FAN Tingjun, HU xiuzhong, GE Yuan. Research progress in human corneal keratocytes[J]. Journal of Shandong University(Medical Science), 2012, 50(8), 57-61. [9] TORRICELLI A A, SANTHANAM A, WU J, et al. The corneal fibrosis response to epithelial-stromal injury[J]. Exp Eye Res, 2016, 142:110-118. [10] Wilson S E, He Y G, Weng J, et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing[J]. Exp Eye Res, 1996, 62(4):325-327. [11] MAYCOCK N J, MARSHALL J. Genomics of corneal wound healing: a review of the literature[J]. Acta Ophthalmol, 2014, 92(3):e170-184. [12] WEST-MAYS J A, DWIVEDI D J. The keratocyte: Corneal stromal cell with variable repair phenotypes[J]. Int J Biochem Cell Biol, 2006, 38(10):1625-1631. [13] ZIESKE J D. Extracellular matrix and wound healing[J]. Curr Opin Ophthalmol, 2001, 12(4):237-241. [14] WILSON S E, CHAURASIA S S, MEDEIROS F W. Apoptosis in the initiation, modulation and termination of the corneal wound healing response[J]. Exp Eye Res, 2007, 85(3):305-311. [15] JESTER J V, HO-CHANG J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction[J]. Exp Eye Res, 2003, 77(5):581-592. [16] WILSON S L, EL HAJ A J, YANG Y. Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering[J]. J Funct Biomater, 2012, 3(3):642-687 [17] FINI M E. Keratocyte and fibroblast phenotypes in the repairing cornea[J]. Prog Retin Eye Res, 1999, 18(4):529-551. [18] CARLSON E C, WANG I J, LIU C Y, et al. Altered KSPG expression by keratocytes following corneal injury[J]. Mol Vis, 2003, 9:615-623. [19] JESTER J V, PETROLL W M, CAVANAGH H D. Corneal stromal wound healing in refractive surgery: the role of myofibroblasts[J]. Prog Retin Eye Res, 1999, 18(3):311-356. [20] CHAURASIA S S, KAUR H, DE MEDEIROS F W, et al. Reprint of “Dynamics of the expression of intermediate filaments vimentin and desmin during myofibroblast differentiation after corneal injury”[J]. Exp Eye Res, 2009, 89(4):590-596. [21] KAUR H, CHAURASIA S S, AGRAWAL V, et al. Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta1[J]. Exp Eye Res, 2009, 89(2):152-158. [22] SINGH V, BARBOSA F L, TORRICELLI A A, et al. Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro[J]. Exp Eye Res, 2014, 120:152-160. [23] KARAMICHOS D HUTCHEON A E, ZIESKE J D. Reversal of fibrosis by TGF-β3 in a 3D in vitro model[J]. Exp Eye Res, 2014, 124:31-36. [24] JESTER J V, PETROLL W M, BARRY P A, et al. Expression of alpha-smooth muscle(alpha-SM)actin during corneal stromal wound healing[J]. Invest Ophthalmol Vis Sci, 1995, 36(5):809-819. [25] BARBOSA F L, CHAURASIA S S, CUTLER A, et al. Corneal myofibroblast generation from bone marrow-derived cells[J]. Exp Eye Res, 2010, 91(1):92-96. [26] SINGH V, AGRAWAL V, SANTHIAGO M R, et al Stromal fibroblast-bone marrow-derived cell interactions: implications for myofibroblast development in the cornea[J]. Exp Eye Res, 2012, 98:1-8. [27] RUIZ-EDERRA J, VERKMAN A S. Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models[J]. Exp Eye Res, 2009, 89(2):159-165. [28] SINGH V, TORRICELLI A A, NAYEB-HASHEMI N, et al. Mouse strain variation in SMA(+)myofibroblast development after corneal injury[J]. Exp Eye Res, 2013, 115:27-30. [29] GAN L, FAGERHOLM P, KIM H J. Effect of leukocytes on corneal cellular proliferation and wound healing[J]. Invest Ophthalmol Vis Sci, 1999, 40(3):575-581. [30] WILSON S E, MOHAN R R, MOHAN R R, et al. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells[J]. Prog Retin Eye Res, 2001, 20(5):625-637. [31] LIU Q, SMITH C W, ZHANG W, et al. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing[J]. Am J Pathol, 2012, 181(2):452-462. [32] LI S, LI B, JIANG H, et al. Macrophage depletion impairs corneal wound healing after autologous transplantation in mice[J]. PLoS One, 2013, 8(4):e61799. [33] MAYER W J, KLAPROTH O K, HENGERER F H, et al. In vitro immunohistochemical and morphological observations of penetrating corneal incisions created by a femtosecond laser used for assisted intraocular lens surgery[J]. J Cataract Refract Surg, 2014, 40(4):632-638. [34] HAYASHI Y, CALL M K, CHIKAMA T, et al. Lumican is required for neutrophil extravasation following corneal injury and wound healing[J]. J Cell Sci, 2010, 123(Pt17):2987-2995. [35] TORRICELLI A A, WILSON S E. Cellular and extracellular matrix modulation of corneal stromal opacity[J]. Exp Eye Res, 2014, 129:151-160. [36] MAGUEN E, RABINOWITZ Y S, REGEV L, et al. Alterations of extracellular matrix components and proteinases in human corneal buttons with INTACS for post-laser in situ keratomileusis keratectasia and keratoconus[J]. Cornea, 2008, 27(5):565-573. [37] KATO T, CHANG J H, AZAR D T. Expression of type XVIII collagen during healing of corneal incisions and keratectomy wounds[J]. Invest Ophthalmol Vis Sci, 2003, 44(1):78-85. [38] ISHIZAKI M, SHIMODA M, WAKAMATSU K, et al. Stromal fibroblasts are associated with collagen IV in scar tissues of alkali-burned and lacerated corneas[J]. Curr Eye Res, 1997, 16(4):339-348. [39] MELLES G R, SUNDARRAJ N, BINDER P S, et al. Immunohistochemical analysis of unsutured and sutured corneal wound healing[J]. Curr Eye Res, 1995, 14(9):809-817. [40] NICKELEIT V, KAUFMAN A H, ZAGACHIN L, et al. Healing corneas express embryonic fibronectin isoforms in the epithelium, subepithelial stroma, and endothelium[J]. Am J Pathol, 1996, 149(2):549-558. [41] MATSUBA M, HUTCHEON A E, ZIESKE J D. Localization of thrombospondin-1 and myofibroblasts during corneal wound repair[J]. Exp Eye Res, 2011, 93(4):534-450. [42] SAIKA S, SUMIOKA T, OKADA Y, et al. Wakayama symposium: modulation of wound healing response in the corneal stroma by osteopontin and tenascin-C[J]. Ocul Surf, 2013, 11(1):12-15. [43] CHAURASIA S S, PERERA P R, POH R, et al. Hevin plays a pivotal role in corneal wound healing[J]. PLoS One, 2013, 8(11):e81544.1- e81544.15. [44] MIYAZAKI K, OKADA Y, YAMANAKA O, et al. Corneal wound healing in an osteopontin-deficient mouse[J]. Invest Ophthalmol Vis Sci, 2008, 49(4):1367-1375. [45] SUMIOKA T, KITANO A, FLANDERS K C, et al. Impaired cornea wound healing in a tenascin C-deficient mouse model[J]. Lab Invest, 2013, 93(2):207-217. [46] BLANCO-MEZQUITA J T, HUTCHEON A E, ZIESKE J D. Role of thrombospondin-1 in repair of penetrating corneal wounds[J]. Invest Ophthalmol Vis Sci, 2013, 54(9):6262-6268. [47] BALDWIN H C, MARSHALL J. Growth factors in corneal wound healing following refractive surgery: a review[J]. Acta Ophthalmol Scand, 2002, 80(3):238-247. [48] CARRINGTON L M, BOULTON M. Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing[J]. J Cataract Refract Surg, 2005, 31(2):412-423. [49] KAKAZU A, HE J, KENCHEGOWDA S, et al. Lipoxin A4 inhibits platelet-activating factor inflammatory response and stimulates corneal wound healing of injuries that compromise the stroma[J]. Exp Eye Res, 2012, 103:9-16. [50] MALECAZE F, MASSOUDI D, FOURNIÉ P, et al. Upregulation of bone morphogenetic protein-1/mammalian tolloid and procollagen C-proteinase enhancer-1 in corneal scarring[J]. Invest Ophthalmol Vis Sci, 2014, 55(10):6712-6721. [51] IZUMI K, KUROSAKA D, IWATA T, et al. Involvement of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in corneal fibroblasts during corneal wound healing[J]. Invest Ophthalmol Vis Sci, 2006, 47(2):591-598. [52] SHI L, CHANG Y, YANG Y, et al. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing[J]. PLoS One, 2012, 7(2):e32128.1- e32128.9. [53] HUXLIN K R, HINDMAN H B, JEON K I, et al. Topical rosiglitazone is an effective anti-scarring agent in the cornea[J]. PLoS One, 2013, 8(8):e70785.1- e70785.16. [54] MØLLER-PEDERSEN T, CAVANAGH H D, PETROLL W M, et al. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK[J]. Curr Eye Res, 1998, 17(7):736-747. [55] JUNG J C, HUH M I, FINI M E. Constitutive collagenase-1 synthesis through MAPK pathways is mediated, in part, by endogenous IL-1alpha during fibrotic repair in corneal stroma[J]. J Cell Biochem, 2007, 102(2):453-462. [56] MILANI B Y, MILANI F Y, PARK D W, et al. Rapamycin inhibits the production of myofibroblasts and reduces corneal scarring after photorefractive keratectomy[J]. Invest Ophthalmol Vis Sci, 2013, 54(12):7424-7430. [57] LEE S H, LEEM H S, JEONG S M, et al. Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea[J]. BMB Rep, 2009, 42(12):800-805. [58] CHEN J, GUERRIERO E, SADO Y, et al. Rho-mediated regulation of TGF-beta1- and FGF-2-induced activation of corneal stromal keratocytes[J]. Invest Ophthalmol Vis Sci, 2009, 50(8):3662-3670. [59] SHARMA A, MEHAN M M, SINHA S, et al. Trichostatin A inhibits corneal haze in vitro and in vivo[J]. Invest Ophthalmol Vis Sci, 2009, 50(6):2695-2701. [60] ALIO J L, ARNALICH-MONTIEL F, RODRIGUEZ A E. The role of “eye platelet rich plasma”(E-PRP)for wound healing in ophthalmology[J]. Curr Pharm Biotechnol, 2012, 13(7):1257-1265. [61] ANITUA E, SANCHEZ M, MERAYO-LLOVES J, et al. Plasma rich in growth factors(PRGF-Endoret)stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-Induced myodifferentiation[J]. Invest Ophthalmol Vis Sci, 2011, 52(9):6066-6073. [62] ANITUA E, MURUZABAL F, ALCALDE I, et al. Plasma rich in growth factors(PRGF-Endoret)stimulates corneal wound healing and reduces haze formation after PRK surgery[J]. Exp Eye Res., 2013, 115:153-161. [63] DAS S K, GUPTA I, CHO Y K, et al. Vimentin knockdown decreases corneal opacity[J]. Invest Ophthalmol Vis Sci, 2014, 55(7):4030-4040. [64] MOHAN R R, GUPTA R, MEHAN M K, et al. Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts[J]. Exp Eye Res, 2010, 91(2):238-245. [65] MOHAN R R, TANDON A, SHARMA A, et al. Significant inhibition of corneal scarring in vivo with tissue-selective, targeted AAV5 decorin gene therapy[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4833-4841. [66] TANDON A, SHARMA A, RODIER J T, et al. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo[J]. PLoS One, 2013, 8(6):e66434.1-. e66434.9 [67] SRIRAM S, GIBSON D J, ROBINSON P, et al. Assessment of anti-scarring therapies in ex vivo organ cultured rabbit corneas[J]. Exp Eye Res, 2014, 125:173-182. [68] CHOWDHURY S, GUHA R, TRIVEDI R, et al. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn[J]. PLoS One, 2013, 8(8):e70528.1- e70528.10. [69] QAZI Y, STAGG B, SINGH N, et al. Nanoparticle-mediated delivery of shRNA.VEGF-a plasmids regresses corneal neovascularization[J]. Invest Ophthalmol Vis Sci, 2012, 53(6):2837-2844. [70] DU Y, FUNDERBURGH M L, MANN M M, et al. Multipotent stem cells in human corneal stroma[J]. Stem Cells, 2005, 23(9):1266-1275. [71] DU Y, CARLSON E C, FUNDERBURGH M L, et al. Stem cell therapy restores transparency to defective murine corneas[J]. Stem Cells, 2009, 27(7):1635-1642. [72] THILL M, SCHLAGNER K, ALTENÄHR S, et al. A novel population of repair cells identified in the stroma of the human cornea[J]. Stem Cells Dev, 2007, 16(5):733-745. [73] BASU S, HERTSENBERG A J, FUNDERBURGH M L, et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring[J]. Sci Transl Med, 2014, 6(266):266ra172.1-266ra172.11. [74] MA X Y, BAO H J, CUI L, et al. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage[J]. PLoS One, 2013, 8(10):e76103.1- e76103.12. [75] WU J, DU Y, MANN M M, et al. Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue[J]. Exp Eye Res, 2014, 120:71-81. [76] GRIFFITH M, HARKIN D G. Recent advances in the design of artificial corneas[J]. Curr Opin Ophthalmol, 2014, 25(3):240-247. [77] HONG J, XU J, SUN X, et al. Tissue-engineered corneal stroma by using autologous adipose derived stem cell tissue and polylacticcocglycolic acid[J]. IFMBE Proc, 2009, 25(11):1-5. [78] DIAO J M, PANG X, QIU Y, et al. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata[J]. Exp Eye Res, 2015,132:216-224. [79] KOULIKOVSKA M, RAFAT M, PETROVSKI G, et al. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique[J]. Tissue Eng Part A, 2015, 21(5/6):1116-1130. [80] KURESHI A K, DRAKE R A, DANIELS J T. Challenges in the development of a reference standard and potency assay for the clinical production of RAFT tissue equivalents for the cornea[J]. Regen Med, 2014, 9(2):167-177. [81] ZHOU Q, LIU Z, WU Z, et al. Reconstruction of highly proliferative auto-tissue-engineered lamellar cornea enhanced by embryonic stem cell[J]. Tissue Eng Part C Methods, 2015, 21(7):639-648. [82] PROULX S, DARC UWAMALIYA J, CARRIER P, et al. Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types[J]. Mol Vis, 2010, 16:2192-2201. [83] MELTENDORF C, BURBACH G J, OHRLOFF C, et al. Intrastromal keratotomy with femtosecond laser avoids profibrotic TGF-beta1 induction[J]. Invest Ophthalmol Vis Sci, 2009, 50(8):3688-3695. |
[1] | FAN Ting-jun, SHAN Ming, PANG Xin. Preparation and characterization of a novel acellular porcine cornea stromata carrier scaffold [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 1-9. |
[2] | YUAN Xiao-long, XU Bin, FAN Ting-jun. Fabrication of a three-dimensional fish collagen scaffold and its biocompatibility characterization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 36-42. |
|