JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 112-117.doi: 10.6040/j.issn.1671-9352.0.2015.430

Previous Articles     Next Articles

The supremum and infimum of partially ordered objects in a topos

LU Tao1, WANG Xi-juan2*, HE Wei3   

  1. 1. School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China;
    2. Department of Mathematics, Nanjing University, Nanjing 210097, Jiangsu, China;
    3. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
  • Received:2015-10-15 Online:2016-04-20 Published:2016-04-08

Abstract: The concepts of supremum and infimum which are common generalizations of lattice theory is introduced, and some well-known lattice theory into an arbitrary topos is lifted. The main result that an object in a topos is a complete partially ordered object if and only if its general subset has supremum and infimum is obtianed.

Key words: partially ordered object, supremum(infimum), topos, complete partially ordered object

CLC Number: 

  • O189.11
[1] JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002.
[2] MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992.
[3] MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972.
[4] 贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006.
[5] JOHNSTONE P T, JOYAL A. Continuous categories and exponentiable toposes[J]. Journal of Pure and Applied Algebra, 1982, 25:255-296.
[6] KOCK A, LECOUTURIER P, MIKKELSEN C J. Some topos theoretic concepts of finiteness[J]. Lecture Notes in Math. Berlin: Springer-Verlag, 1975, 445:209-283.
[7] 孟晓青. Topos理论简介[J]. 数学进展, 1992, 21(1):1-24. MENG Xiaoqing. An introduction to topos theory[J]. Advances in Mathematics, 1992, 21(1):1-24.
[8] LUO Maokang, HE Wei. A new logic for uncertainty[J]. 2015, http://arxiv.org/abs/1506.03123.
[9] HE Wei, LUO Maokang. Quantum spaces[J]. Acta Mathematica Sinica, English Series, 2010, 26(7):1323-1330.
[10] 卢涛, 贺伟, 王习娟. Galois connections in a topos[J]. 数学研究与评论, 2010, 30(3):381-389. LU Tao, HE Wei, WANG Xi Juan. Galois connections in a topos[J]. Journal of Mathematical Research and Exposition, 2010, 30(3):381-389.
[11] 王习娟, 贺伟. On the heyting algebra objects in a topos[J]. Journal of Mathematics, 2011, 31(6):979-998. WANG Xijuan, HE Wei. On the heyting algebra objects in a topos[J]. 数学杂志, 2011, 31(6):979-998.
[12] 卢涛,王习娟,贺伟.Topos中的完备偏序对象上的算子理论[J].山东大学学报(理学版),2016,51(2):64-71. LU Tao, WANG Xijuan, HE Wei. The operator theory on complete partially ordered objects in a topos[J]. Journal of Shandong University(Natural Science), 2016, 51(2):64-71.
[1] LU Tao, WANG Xi-juan, HE Wei. The operator theory on complete partially ordered objects in a topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 64-71.
[2] LU Tao, WANG Xi-juan, HE Wei. An equivalent characterization of the choice axiom in a Topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 54-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!