JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 48-57.doi: 10.6040/j.issn.1671-9352.0.2017.380
Previous Articles Next Articles
FENG Hai-xing1, ZHAI Cheng-bo2*
CLC Number:
[1] OLDHAM K B, SPANIER J. The fractional calculus[M]. New York: Academic Press, 1974. [2] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science, 2006, 204(49-52):2453-2461. [3] KILBAS A A, MARZAN S A. Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions[J]. Differential Equations, 2005, 41(1):84-89. [4] METZLER R, SCHICK W, KILIAN H, et al. Relaxation in filled polymers: a fractional calculus approach[J]. Journal of Chemical Physics, 1995, 103(16):7180-7186. [5] GOODRICH C S. On discrete sequential fractional boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2012, 385(1):111-124. [6] LAKSHMIKANTHAM V. Theory of fractional functional differential equations[J]. Nonlinear Analysis Theory Methods and Applications, 2008, 69(10):3337-3343. [7] FENG Wenquan, SUN Shurong, HAN Zhenlai, et al. Existence of solutions for a singular system of nonlinear fractional differential equations[J]. Computers and Mathematics with Applications, 2011, 62(3):1370-1378. [8] FENG Haixing, ZHAI Chengbo. Existence and uniqueness of positive solutions for a class of fractional differential equation with integral boundary conditions[J]. Nonlinear Analysis Modelling and Control, 2017, 22(2):160-172. [9] WANG Lin, LU Xinyi. Existence and uniqueness of solutions for a singular system of highter-order nonlinear fractional differential equations with integral boundary conditions[J]. Nonlinear Analysis: Modelling and Control, 2013, 31(31):493-518. [10] LIANG Sihua, ZHANG Jihui. The existence of three positive solutions for some nonlinear boundary value problems on the half-line[J]. Positivity, 2009, 13(2):443-457. [11] FERREIRA RAC. Positive solutions for a class of boundary value problems with fractional q-differences[J]. Pergamon Press, Inc, 2011, 61(2):367-373. [12] YUAN Chengjun. Two positive solutions for(n-1,1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2):930-942. [13] YANG Chen, ZHAI Chengbo. Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator[J]. Electronic Journal of Differential Equations, 2012, 2012(70):808-826. [14] ZHAI Chengbo, YAN Weiping, YANG Chen. A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4):858-866. [15] 郭大钧. 非线性分析中的半序方法[M].济南:山东科学技术出版社,2000. GUO Dajun. Partial methods in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2000. |
|