JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (6): 7-10.doi: 10.6040/j.issn.1671-9352.0.2017.286
Previous Articles Next Articles
ZHANG Jiang-yue, XU Chang-qing*
CLC Number:
[1] AKIYAMA J. Three developing topics in graph theory[D]. Tokyo: University of Tokyo, 1980. [2] AKIYAMA J, EXOO G, HARARY F. Covering and packing in graphs. III: Cyclic and acyclic invariants[J]. Mathematica Slovaca, 1980, 30(4):405-417. [3] AKIYAMA J, EXOO G, HARARY F. Covering and packing in graphs IV: Linear arboricity[J]. Networks, 1981, 11(1):69-72. [4] ENOMOTO H, PÉROCHE B. The linear arboricity of some regular graphs[J]. Journal of Graph Theory, 2010, 8(2):309-324. [5] GULDAN F. The linear arboricity of 10-regular graphs[J]. Mathematica Slovaca, 1986, 36(3):225-228. [6] WU J L. On the linear arboricity of planar graphs[J]. Journal of Graph Theory, 2015, 31(2):129-134. [7] LIH K W, TONG L D, WANG W F. The linear 2-arboricity of planar graphs[J]. Graphs & Combinatorics, 2003, 19(2):241-248. [8] 徐常青,安丽莎,杜亚涛.平面图线性2-荫度的一个上界[J]. 山东大学学报(理学版), 2014, 49(4): 38-40. XU Changqing, AN Lisha, DU Yatao. An upper bound on the linear 2-arboricity of planar graph[J]. Journal of Shandong University(Natural Science), 2014, 49(4):38-40. [9] WANG Y Q. Improved upper bound on the linear 2-arboricity of planar graphs[J]. Discrete in Mathematics, 2016, 339(1):39-45. [10] XU C Q, CHANG J J. The linear 2-arboricity of some planar graphs[J]. Ars Combinatoria, 2014, 114:223-227. [11] 吴建良. 图的最大平均度与线性萌度的关系[J]. 山东大学学报(理学版),2005,40(6):27-30. WU Jianliang. The relationship between the maximum average degree and the linear arboricity of a graph[J]. Journal of Shandong University(Natural Science), 2005, 40(6):27-30. [12] CHEN B L, FU H L, HUANG K C, et al. Decomposing graphs into forests of paths with size less than three[J]. Australasian Journal of Combinatorics, 1991, 3:55-73. [13] BERMOND J C, FOUQUET J L, HABIB M, et al. On linear k-arboricity[J]. Discrete Mathematics, 1984, 52(2):123-132. |
[1] | PAN Wen-hua, XU Chang-qing. Neighbor sum distinguishing index of a kind of sparse graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 94-99. |
[2] | CHEN Hong-yu, ZHANG Li. Linear 2-arboricity of planar graphs with 4-cycles have no common vertex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 36-41. |
[3] | YAO Jing-jing, XU Chang-qing. Neighbor sum distinguishing total coloring of graphs with maximum degree 3 or 4 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 9-13. |
[4] | CHEN Hong-yu1, ZHANG Li2. The linear 2-arboricity of planar graphs without 5-, 6-cycles with chord [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 26-30. |
[5] | XU Chang-qing1, AN Li-sha1, DU Ya-tao2. An upper bound on the linear 2-arboricity of planar graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 38-40. |
[6] | ZHANG Xin1, XU Lan2, LIU Gui-Zhen1. k-forested coloring of sparse graphs [J]. J4, 2011, 46(4): 1-3. |
|