### Linear 2-arboricity of planar graphs with 4-cycles have no common vertex

CHEN Hong-yu1, ZHANG Li2

1. 1. School of Science, Shanghai Institute of Technology, Shanghai 201418, China;
2. School of Statistics and Mathematics, Shanghai Lixin University of Accouting and Finance, Shanghai 201209, China
• Received:2016-12-16 Online:2017-12-20 Published:2017-12-22

Abstract: The linear 2-arboricity la2(G)of G is the least integer k to divide G into k edge-disjoint forests, and each branch of the forests is a path with the length at most 2. We prove that if G is a planar graph with 4-cycles without common vertex, then la2(G)≤「Δ/2+5.

Key words: cycle, planar graph, linear 2-arboricity

CLC Number:

• O157.5
 [1] HABIB M, PEROCHE B. Some problems about linear arboricity[J]. Discrete Mathematics, 1982, 41(2):219-220.[2] CHEN B L, FU H L, HUANG K C. Decomposing graphs into forests of paths with size less than three[J]. Australas J Combin, 1991, 3:55-73.[3] FU H L, HUANG K C. The linear 2-arboricity of complete bipartite graphs[J]. Ars Combinatoria, 1994, 38:309-318.[4] THOMASSEN C. Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5[J]. Journal of Combinatorial Theory, 1999, 75(1):100-109.[5] CHANG G J. Algorithmic aspects of linear k-arboricity[J]. Taiwanese Journal of Mathematics, 1999, 3(1):73-81.[6] CHANG G J, CHEN B L, FU H L, et al. Linear k-arboricity on trees [J]. Discrete Appl Math, 2000, 103:281-287.[7] BERMOND J C, FOUQUET J L, HABIB M, et al. On linear k-arboricity [J]. Discrete Math, 1984, 52: 123-132.[8] JACKSON B, WORMALD N C. On the linear k-arboricity of cubic graphs[J]. Discrete Mathematics, 1996, 162(1-3):293-297.[9] ALDRED R E L, WORMALD N C. More on the linear k-arboricity of regular graphs[J]. Australasian Journal of Combinatorics, 2014, 18:97-104.[10] LIH K W, TONG L D, WANG W F. The linear 2-arboricity of planar graphs[J]. Graphs & Combinatorics, 2003, 19(2):241-248.[11] 钱景,王维凡. 不含4-圈的平面图的线性2-荫度[J].浙江师范大学学报(自然科学版),2006,29(2):121-125. QIAN Jing, WANG Weifan. The linear 2-arboricity of planar graphs without 4-cycles[J]. J Zhejiang Norm Univ(Nat Sci), 2006, 29(2): 121-125.[12] MA Qin, WU Jianliang. Planar graphs without 5-cycles or without 6-cycles [J]. Discrete Math, 2009, 309: 2998-3005.[13] CHEN Hongyu, TAN Xiang, WU Jianliang. The linear 2-arboricity of planar graphs without adjacent short cycles [J]. Bull Korean Math Soc, 2012, 49: 145-154.[14] 王苒群,左连翠. 不含4-圈和5-圈的平面图的线性2-荫度[J]. 山东大学学报(理学版),2012,47(6):71-75. WANG Ranqun, ZUO Liancui. The linear 2-arboricity of planar graphs without 4-cycles and 5-cycles[J]. Journal of Shandong University(Natural Science), 2012, 47(6): 71-75.[15] 陈宏宇, 张丽. 不含弦5-圈和弦6-圈的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2014, 49(6):26-30. CHEN Hongyu, ZHANG Li. The linear 2-arboricity of planar graphs without 5-, 6-cycles with chord[J]. Journal of Shandong University(Natural Science), 2014, 49(6):26-30.
 [1] ZHANG Jiang-yue, XU Chang-qing. Linear 2-arboricity of graphs with maximum average degree at most 4 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 7-10. [2] FANG Qi-ming, ZHANG Li. k-frugal list coloring of planar graphs without 4 and 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 35-41. [3] WANG Xiao-li, WANG Hui-juan, LIU Bin. Total coloring of planar graphs with maximum degree seven [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 100-106. [4] WANG Ye, SUN Lei. Every 1-planar graph without cycles of length 3 or 4 is 5-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 34-39. [5] HE Yu-ping, WANG Zhi-wen, CHEN Xiang-en. Vertex-distinguishing total coloring of mC8 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 24-30. [6] YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43. [7] TAN Xiang. Total colorings of planar graphs without 6-cycles and adjacent 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 72-78. [8] BAI Dan, ZUO Lian-cui. The(d,1)-total labelling of the cube of cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 59-64. [9] WANG Jia-jiang, CHEN Ling, MEN Yu-tao, JI Chen. The feasibility study on shorten treatment cycle of dental implantation and split-root technique joint repair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 40-43. [10] ZHU Hai-yang, GU Yu, LÜ Xin-zhong. New upper bound on the chromatic number of the square of a planar graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 94-101. [11] WU Zi-juan, CHEN Yuan-yuan, ZHANG Liang-yun. Quasidimodule algebras over Hopf quasigroups and Yetter-Drinfeld quasimodule algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 28-33. [12] MENG Xian-yong, GUO Jian-hua, SU Ben-tang. The complete coloring of 3-regular Halin graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 127-129. [13] XUE Li-xia, LI Zhi-hui, XIE Jia-li. A note on the optimal information rate of hypercycle access structure with three hyperedges [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 60-66. [14] WANG Shan-shan, QI En-feng. On the number of contractible edges of longest cycles in k-connected graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 27-31. [15] MENG Xian-qing. Strong edge coloring of a class of planar graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 10-13.
Viewed
Full text

Abstract

Cited

Shared
Discussed