JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (10): 28-33.doi: 10.6040/j.issn.1671-9352.0.2016.031

Previous Articles     Next Articles

Quasidimodule algebras over Hopf quasigroups and Yetter-Drinfeld quasimodule algebras

WU Zi-juan, CHEN Yuan-yuan, ZHANG Liang-yun*   

  1. College of Science, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2016-01-19 Online:2016-10-20 Published:2016-10-17

Abstract: A sufficient and necessary condition for a Long skew Hopf quasigroup to be a quasidimodule algebra is given, and the relation between the braided Hopf quasigroup and the Yetter-Drinfeld quasimodule algebra is studied. At the end, the quantization of Long skew Hopf quasigroups is constructed by Harrison 2-cocycle, and the conclusion for a quantized Long skew Hopf quasigroup to be a quasidimodule algebras is proved.

Key words: Hopf quasigroup, Yetter-Drinfeld quasimodule algebra, Harrison 2-cocycle, quasidimoudle algebra

CLC Number: 

  • O153.3
[1] KLIM J, MAJID S. Hopf quasigroups and the algebraic 7-sphere[J]. Joural of Algebra, 2010, 323(11):3067-3110.
[2] ZHANG Liangyun. Long bialgebras, dimodule algebras and quantum Yang-Baxter modules over Long bialgebras[J]. Acta Mathematica Sinica, 2006, 22(4):1261-1270.
[3] CAO Xuexia, ZHANG Liangyun. Quantization of dimodule algebras and Quantum Yang-Baxter module algebras[J]. Joural of Mathmatical Research and Exposition, 2010, 30(4):725-733.
[4] 焦争鸣,王艳玲. Hopf拟群的代数形变[J].河南师范大学学报(自然科学版),2013,41(6):9-12. JIAO Zhengming, WANG Yanling. Algebra deformation of Hopf quasigroup[J]. Joural of Henan Normal University(Nature Science Edition), 2013, 41(6):9-12.
[5] JIAO Zhengming, ZHAO Xiaofang. Almost cocommutative and quasitriangular Hopf coquasigroups[J]. Journal of Algebra and its Applications, 2014, 13(6):1-14.
[6] SWEEDLER M E. Hopf Algebras[M]. New York: Benjamin, 1969: 3-90.
[7] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Rhode Island: American mathematical society providence, 1993: 1-40.
[8] BRZEZINSKI T. Hopf modules and the fundamental theorem for Hopf(co)quasigroups[J]. International Electronic Journal of Algebra, 2010, 8:114-128.
[9] XIAO Lifang, TORRECILLAS B. Twisted smash products and L-R smash products for biquasimodule Hopf quasigroups[J]. Communications in Algebra, 2014, 42(10):4204-4234.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!