JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (8): 39-43.doi: 10.6040/j.issn.1671-9352.0.2015.428
Previous Articles Next Articles
YU Xiao-lan
CLC Number:
[1] MASUOKA A. Abelian and non-abelian second cohomologies of quantized enveloping algebras[J]. J Algebra, 2007, 320(1):1-47. [2] IGLESIAS A G, MOMBELLI M. Representations of the category of modules over pointed Hopf algebras over S3 and S4[J]. Pacific J Math, 2010, 252(2):343-378. [3] GOODEARL K R, ZHANG J J. Homological properties of quantized coordinate rings of semisimple groups[J]. Proceedings of the London Mathematical Society, 2007, 94(5):647-671. [4] KIRKMAN E, KUZMANOVICH J, ZHANG J J. Gorenstein subrings of invariants under Hopf algebra actions[J]. J Algebra, 2009, 322(10):3640-3669. [5] LU Diming, WU Quanshui, ZHANG J J. Hopf algebras with rigid dualizing complexes[J]. Israel J Math, 2009, 169(1):89-108. [6] BICHON J. Hopf-Galois objects and cogroupoids[J]. Revista De La Unión Matemática Argentina, 2014, 55(2):11-69. [7] BICHON J. Hochschild homology of Hopf algebras and free Yetter-Drinfeld resolutions of the counit[J]. Compositio Mathematica, 2012, 149(4):658-678. [8] BICHON J. Gerstenhaber-Schack and Hochschild cohomologies of co-Frobenius Hopf algebras[J/OL]. Eprint Arxiv, 2014. arXiv.org> math> arXiv:1411.1942. [9] CAENEPEEL S, GUÉDÉNON T. Semisimplicity of the categories of Yetter-Drinfeld modules and Long dimodules[J]. Comm Algebra, 2004, 32(4):2767-2781. [10] ANDRUSKIEWITSCH N, SCHNEIDER H J. A characterization of quantum groups[J]. Journal Für Die Reine Und Angewandte Mathematik, 2002, 2004(577):81-104. |
[1] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[2] | WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13. |
[3] | GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15. |
[4] | XU Ai-min. On relative homological dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 44-48. |
[5] | FU Xue-rong, YAO Hai-lou. Tilting comodules over triangular matrix coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 25-29. |
[6] | GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23. |
[7] | JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101. |
[8] | YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80. |
[9] | LU Dao-wei, ZHANG Xiao-hui. Ore extensions of G-cograded multiplier Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 52-58. |
[10] | ZHAO Shi-yin1,2, ZHOU Ke-yuan1. The module algebra structures on M2(k) [J]. J4, 2013, 48(8): 24-29. |
[11] | WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45. |
[12] | DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22. |
[13] |
CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3.
The Structure Theorem of weak comodule algebras in Yetter-Drinfeld module categories [J]. J4, 2013, 48(12): 14-17. |
[14] | CHEN Quan-guo, GUO Ji-dong. The Monoidal category of generalized quantum cocommutative coalgebras [J]. J4, 2012, 47(12): 69-71. |
[15] | . Irreducible representations of D(kS3) and ring structure of its Grothendieck group [J]. J4, 2009, 44(12): 17-21. |
|