JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (1): 1-18.doi: 10.6040/j.issn.1671-9352.9.2018

• High-end forum •     Next Articles

Ionic liquid gels

Juan GAO1,Xiao-lin WANG2,Heinz HOFFMANN3,Jing-cheng HAO3,*   

  1. 1. Basic Teaching Department, Shandong Drug and Food Vocational College, Zibo 255011, Shandong, China
    2. School of Chemistry and Material Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
    3. Key Laboratory of Colloid and Interface Chemistry, Jinan 250100, Shandong, China
  • Received:2018-12-22 Online:2019-01-20 Published:2019-01-23
  • Contact: Jing-cheng HAO
  • Supported by:
    国家自然科学基金重点国际(地区)合作研究资助项目(2140102006)

Abstract:

Ionic liquid gels (Ionogels) are the kind of gels formed by using ionic liquids as dispersing media. As new mixed materials, ionogels not only keep the original properties of ionic liquids, but also solve the problems of ionic liquid spillover. The high plasticity in shape meets the needs of special materials and expands the application of ionic liquids. There are many kinds of ionogels, which can be divided into physical and chemical types. Recent years, the structures, properties and applications of ionogels have become one of the hot topics in colloid and interface sciences, as well as the main contents of soft matters. The progress in the construction, structures, properties and applications of ionogels in recent years is reviewed and summarized, which can provide an important theoretical guidance for the construction and applications of ionogels in the future.

Key words: surfactant, aggregate, ionic liquid gel, responsibility

CLC Number: 

  • O648

Fig.1

Classification of gels[6]"

Fig.2

Different stimuli for gels"

Fig.3

Schematic representation of aggregation modes[6]"

Fig.4

Molecular self-assembly of gels[8]"

Fig.5

Different gels classified by the dispersed liquid phases"

Fig.6

Different types of ionogels[11]"

Fig.7

Chemical structures of ionic liquids and synthetic amphiphiles[12]"

Fig.8

Molecular structures of gelators 1-6[13]"

Fig.9

Chemical structure of the gelator and microstructures of three gels[14]"

Fig.10

Synthetic procedure for P(AzoMA-r-NIPAm)-b-PEO-b-P(AzoMA-r-NIPAm) ABA triblock copolymer[16]"

Fig.11

Formation of ionogels[17]"

Table 1

Morphologies of the [BMIM][TFSI]/SiO2 hybrid materials[20]"

IL conc.(wt%)
10 20 30 40 50 60 70 80 90
SiO2 100 μm P G G G L L L L
SiO2 70 nm P P G G G VL VL VL VL
SiO2 14 nm P P P P P G G G G
SiO2 7 nm P P P P P P G G G

Fig.12

Polarized optical micrographs and illustrations of the oriented structures of the ionogel[21]"

Fig.13

Sol-gel processing in the presence of IL [Carb-Bim]Br [23]"

Fig.14

The [75/25]/64 ionobrid[24]"

Fig.15

Procedure of preparing ILs-based nanocomposite polymer electrolytes from liquid crystalline PVA/HNTs aqueous dispersions[25]"

Fig.16

Pictures (insets) and G' and G" values before and after the immersion overnight at 20 ℃[27]"

Fig.17

Arrhenius plots of ionic conductivity for a PDMS-supported ionogel and for neat EMI TCB[26]"

Fig.18

Electrochemical properties of ionogles[18]"

Fig.19

(a) TGA thermogram and (b) differential thermal gravimetric (DTG) curves of HNT, BMIMBF4, and BMIMBF4/HNT ionogels. The heating rate is 10 ℃·min-1)[21]"

Fig.20

Ionogels, multi-purpose hybrid materials[11]"

Fig.21

Formation and properties of microsupercapacitors[37]"

Fig.22

Fabrication of hybrid ionogels[38]"

Fig.23

Electrochemical properties of LiFePO4/HI-2/Li clells[38]"

Fig.24

Preparation of electrochemiluminescent[39]"

Fig.25

Schematic diagram (c) and an optical microscope image (d) of side-gated P3HT Gel-OTFTs[41]"

Fig.26

Corrosion tests of ionic liquid and LMWG2. The speed-up corrosion test solution contains LMWG and ILs with different contents in saturated Ca(OH)2 solution (45 days at room temperature)[30]"

Fig.27

Thixotropic behavior and friction and wear property of the ionogels[30]"

1 JORDON LLOYD D . Colloid Chemistry Vol[M]. New York: The Chemical Catalog Co, 1926: 767.
2 TERECH P , WEISS R G . Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chemical Reviews, 1997, 97 (8): 3133- 3160.
doi: 10.1021/cr9700282
3 GRAHAM T . Liquid diffusion applied to analysis[J]. Philos Trans R Soc, 1861, 151: 183- 224.
doi: 10.1098/rstl.1861.0011
4 FLORY P J . Introductory lecture[J]. Faraday Discuss Chem Soc, 1974, 57: 7- 18.
doi: 10.1039/dc9745700007
5 OKESOLA B O , SMITH D K . Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal[J]. Chemical Society Reviews, 2016, 45 (15): 4226- 4251.
doi: 10.1039/C6CS00124F
6 SANGEETHA N M , MAITRA U . Supramolecular gels: functions and uses[J]. Chemical Society Reviews, 2005, 34 (10): 821- 836.
doi: 10.1039/b417081b
7 SEGARRA-MASET M D , NEBOT V J , MIRAVET J F , et al. Control of molecular gelation by chemical stimuli[J]. Chemical Society Reviews, 2013, 42 (17): 7086- 7098.
doi: 10.1039/C2CS35436E
8 ESCUDER B , MIRAVET J F . Functional Molecular Gels[M]. Cambridge: Royal Society of Chemistry, 2013.
9 ESTROFF L A , HAMILTON A D . Water gelation by small organic molecules[J]. Chemical Reviews, 2004, 104 (3): 1201- 1218.
10 MARR P C , MARR A C . Ionic liquid gel materials: applications in green and sustainable chemistry[J]. Green Chemistry, 2016, 18 (1): 105- 128.
doi: 10.1039/C5GC02277K
11 LE BIDEAU J , VIAU L , VIOUX A . Ionogels, ionic liquid based hybrid materials[J]. Chemical Society Reviews, 2011, 40 (2): 907- 925.
12 KIMIZUKA N , NAKASHIMA T . Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels[J]. Langmuir, 2001, 17 (22): 6759- 6761.
doi: 10.1021/la015523e
13 ISHIOKA Y , MINAKUCHI N , MIZUHATA M , et al. Supramolecular gelators based on benzenetricarboxamides for ionic liquids[J]. Soft Matter, 2014, 10 (7): 965- 971.
doi: 10.1039/C3SM52363B
14 MINAKUCHI N , HOE K , YAMAKI D , et al. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids[J]. Langmuir, 2012, 28 (25): 9259- 9266.
doi: 10.1021/la301442f
15 ISIK M , GRACIA R , KOLLNUS L C , et al. Cholinium-based poly(ionic liquid)s: synthesis, characterization, and application as biocompatible ion gels and cellulose coatings[J]. ACS Macro Letters, 2013, 2 (11): 975- 979.
doi: 10.1021/mz400451g
16 UEKI T , USUI R , KITAZAWA Y , et al. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly[J]. Macromolecules, 2015, 48 (16): 5928- 5933.
doi: 10.1021/acs.macromol.5b01366
17 THIEMANN S , SACHNOV S J , PETTERSSON F , et al. Cellulose-based ionogels for paper electronics[J]. Advanced Functional Materials, 2014, 24 (5): 625- 634.
doi: 10.1002/adfm.201302026
18 LIU X H , WEN Z B , WU D B , et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (30): 11569- 11573.
doi: 10.1039/C4TA01944J
19 TRIVEDI T J , BHATTACHARJYA D , YU J S , et al. Functionalized agarose self-healing ionogels suitable for supercapacitors[J]. Chem Sus Chem, 2015, 8 (19): 3294- 3303.
doi: 10.1002/cssc.201500648
20 SHIMANO S , ZHOU H S , HONMA I . Preparation of nanohybrid solid-state electrolytes with liquidlike mobilities by solidifying ionic liquids with silica particles[J]. Chemistry of Materials, 2007, 19 (22): 5216- 5221.
doi: 10.1021/cm0707814
21 ZHAO N N , LIU Y L , ZHAO X M , et al. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability[J]. Nanoscale, 2016, 8 (3): 1545- 1554.
22 DUCROS J B , BUCHTOV N , MAGREZ A , et al. Ionic and electronic conductivities in carbon nanotubes-ionogel solid device[J]. J Mater Chem, 2011, 21 (8): 2508- 2511.
doi: 10.1039/C0JM02016H
23 WANG Y , KALYTCHUK S , ZHANG Y , et al. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal of Physical Chemistry Letters, 2014, 5 (8): 1412- 1420.
doi: 10.1021/jz5005335
24 GUYOMARD-LACK A , ABUSLEME J , SOUDAN P , et al. Hybrid silica-polymer ionogel solid electrolyte with tunable properties[J]. Advanced Energy Materials, 2014, 4 (8): 1301570.
doi: 10.1002/aenm.201301570
25 SONG H Z , ZHAO N N , QIN W C , et al. High-performance ionic liquid-based nanocomposite polymer electrolytes with anisotropic ionic conductivity prepared by coupling liquid crystal self-templating with unidirectional freezing[J]. Journal of Materials Chemistry A, 2015, 3 (5): 2128- 2134.
doi: 10.1039/C4TA05720A
26 HOROWITZ A I , PANZER M J . Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading[J]. Angewandte Chemie International Edition, 2014, 53 (37): 9780- 9783.
doi: 10.1002/anie.201405691
27 TAMESUE S , OHTANI M , YAMADA K , et al. Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants[J]. Journal of the American Chemical Society, 2013, 135 (41): 15650- 15655.
doi: 10.1021/ja408547g
28 XIE Z L , HUANG X , TAUBERT A . DyeIonogels: proton-responsive ionogels based on a dye-ionic liquid exhibiting reversible color change[J]. Advanced Functional Materials, 2014, 24 (19): 2837- 2843.
doi: 10.1002/adfm.v24.19
29 SINGH V V , NIGAM A K , BATRA A , et al. Applications of ionic liquids in electrochemical sensors and biosensors[J]. International Journal of Electrochemistry, 2012, 2012: 1- 19.
30 CAI M R , LIANG Y M , ZHOU F , et al. Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator[J]. Journal of Materials Chemistry, 2011, 21 (35): 13399- 13405.
doi: 10.1039/c1jm12010g
31 VISENTIN A F , PANZER M J . Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response[J]. ACS Applied Materials & Interfaces, 2012, 4 (6): 2836- 2839.
32 BUCHTOV N , GUYOMARD-LACK A , LE BIDEAU J . Biopolymer based nanocomposite ionogels: high performance, sustainable and solid electrolytes[J]. Green Chem, 2014, 16 (3): 1149- 1152.
doi: 10.1039/C3GC42022A
33 CHEN B H , LU J J , YANG C H , et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers[J]. ACS Applied Materials & Interfaces, 2014, 6 (10): 7840- 7845.
34 ZHOU D , ZHOU R , CHEN C X , et al. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices[J]. The Journal of Physical Chemistry B, 2013, 117 (25): 7783- 7789.
doi: 10.1021/jp4021678
35 SHEN B S , LANG J W , GUO R S , et al. Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7 (45): 25378- 25389.
36 WANG S , HSIA B , CARRARO C , et al. High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte[J]. J Mater Chem A, 2014, 2 (21): 7997- 8002.
doi: 10.1039/C4TA00570H
37 KIM D , LEE G , KIM D , et al. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte[J]. ACS Applied Materials & Interfaces, 2015, 7 (8): 4608- 4615.
38 LEE J H , LEE A S , LEE J C , et al. Hybrid ionogel electrolytes for high temperature lithium batteries[J]. J Mater Chem A, 2015, 3 (5): 2226- 2233.
39 MOON H C , LODGE T P , FRISBIE C D . Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic[J]. Journal of the American Chemical Society, 2014, 136 (9): 3705- 3712.
doi: 10.1021/ja5002899
40 YUAN H T , SHIMOTANI H , TSUKAZAKI A , et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids[J]. Advanced Functional Materials, 2009, 19 (7): 1046- 1053.
doi: 10.1002/adfm.v19:7
41 LEE K H , KANG M S , ZHANG S P , et al. "Cut and stick" rubbery ion gels as high capacitance gate dielectrics[J]. Advanced Materials, 2012, 24 (32): 4457- 4462.
doi: 10.1002/adma.201200950
[1] CHENG Xi, WANG Chuan-xu, XU Lang. Decision-making in low-carbon supply chain considering altruism preference [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(5): 41-52.
[2] XU Hai-li, LONG Pan-feng. Interaction between alkyl polyglycosides and other different surfactants [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 9-14.
[3] . Cryptanalysis and improvement of two kind of certificateless aggregate signature schemes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 107-114.
[4] NONG Qiang, HUANG Zhen-jie, HUANG Ru-fen. Improvement of a certificateless aggregate signature scheme [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 52-59.
[5] FAN Ai-wan, XIA Dong-liang, YANG Zhao-feng. Security analysis and improvement of two certificateless aggregate signature schemes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 42-48.
[6] ZHANG Quan, HAN Yang, GUAN Bao-ling, LI Yan-jun. Reliability analysis of a warm standby repairable system with unreliable transfer switch [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 62-65.
[7] WEN Yan-qing, MENG Xian-qing, CHANG Ke-liang. The reliability analysis for aggregated Markov repairable system with fatigue time omission [J]. J4, 2013, 48(8): 78-82.
[8] HOU Hong-xia1,2, ZHANG Xue-feng2, DONG Xiao-li2. Improved certificateless aggregate signature scheme [J]. J4, 2013, 48(09): 29-34.
[9] ZHANG Da-zhi, LENG Shi-liang, SUN Ting-ting, WANG Cun-ying. Study of the adsorption of type I collagen on LB film [J]. J4, 2012, 47(1): 33-38.
[10] ZHAO Xi-dan1, LU Yan-min1, YANG Yan-zhao1, 2*. Study on the extraction of gallium by microemulsions [J]. J4, 2010, 45(9): 109-112.
[11] HAO Jing-Cheng. Self-assembly of surfactants perform synergism and amalgamation  between bulk solutions and interfaces [J]. J4, 2010, 45(1): 1-9.
[12] SUN Yan-lin,ZHOU Chuan-jian* and ZHAO Shi-gui . Systhesis of mesoporous organosilicas using a new kind of carbosilane dendrimers as a silica resource [J]. J4, 2007, 42(5): 38-43 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[4] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[5] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[6] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[7] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[10] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 .