JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (10): 40-48.doi: 10.6040/j.issn.1671-9352.0.2019.157
CHEN Lin
CLC Number:
[1] MOMONIAT E, HARLEY C. An implicit series solution for a boundary value problem modelling a thermal explosion[J]. Math Comput Modelling, 2011, 53(1/2):249-260. [2] PEEBLES P J E. Star distribution near a collapsed object[J]. Astrophysical Journal, 1972, 178(2):371-376. [3] SHAO Zhiqiang. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation[J]. Z Angew Math Phys, 2018, 69(2):1-44. [4] AMANN H, CRANDALL M G. On some existence theorems for semi-linear elliptic equations[J]. Indiana Univ Math J, 1978, 27(5):779-790. [5] FERIA L F O, MIYAGAKI O H, MOTREANU D, et al. Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient[J]. Nonlinear Anal, 2014, 96:154-166. [6] POHOZAEV S. On equations of the type Δu=f(x,u,Du)[J]. Mat Sb, 1980, 113(2):324-338. [7] KIRCHHOFF G. Mechanik[M]. Leipzig, Germany: Teubner, 1883. [8] LIONS J L. On some questions in boundary value problems of mathematical physics[C] // JANEIRO R. International Symposium on Continuum, Mechanics and Partial Differential Equations. Amsterdam: North-Holland, 1978: 284-346. [9] FIGUEIREDO D D, GIRARDI M, MATZEU M. Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques[J]. Differ Integ Eq, 2004, 17(2):119-126. [10] FIGUEIREDO G M. Quasilinear equations with dependence on the gradient via mountain pass techniques in RN[J]. Applied Mathematics and Computations, 2008, 203(1):14-18. [11] FREITAS L R D. Mutiplicity of solutions for a class of quasilinear equations with exponential critical growth[J]. Nonlinear Anal, 2014, 95:607-624. [12] DÍAZ J I. Nonlinear partial differential equations and free boundaries: elliptic equations(Vol.I)[M]. Boston: Res Notes Math, 1985. [13] DOÓ J M, MEDEIROS E, SEVERO U. On a quasilinear nonhomogeneous elliptic equation with critical growth in RN[J]. J Differential Equations, 2009, 246(4):1363-1386. [14] TRUDINGER N. On imbedding into Orlicz space and some applications[J]. J Math Mech, 1967, 17(3):473-484. [15] DO Ó J M, MEDEIROS E S. Remarks on least energy solutions for quasilinear elliptic problems in RN[J]. Electron J Differential Equations, 2003(83):1-14. [16] BERESTYCKI H, LIONS P L. Nonlinear scalar field equations I: existence of ground state[J]. Arch Rational Mech Anal, 1983, 82(4):313-346. [17] DO Ó J M,SOUZA M D, MEDEIROS E D, et al. Critical points for a functional involving critical growth of Trudinger-Moser type[J]. Potential Anal, 2015, 42(1):229-246. [18] AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal, 1973, 14(4):349-381. [19] DIBENEDETTO E. C1+α local regularity of weak solutions of degenerate elliptic equations[J]. Nonlinear Anal, 1983, 7(8):827-850. |
|